The typical complex orography of the Mediterranean coastal areas support the formation of the so-called back-building mesoscale convective systems (MCS) producing torrential rainfall often resulting in flash floods. As these events are usually very small-scaled and localized, they are hardly predictable from a hydrometeorological standpoint, frequently causing a significant amount of fatalities and socioeconomic damage. Liguria, a northwestern Italian region, is characterized by small catchments with very short hydrological response time and is thus extremely prone to the impacts of back-building MCSs. Indeed, Liguria has been hit by three intense back-building MCSs between 2011 and 2014, causing a total death toll of 20 people and several hundred millions of euros of damages. Consequently, it is necessary to use hydrometeorological forecasting frameworks coupling the finescale numerical weather prediction (NWP) outputs with rainfall–runoff models to provide timely and accurate streamflow forecasts. Concerning the aforementioned back-building MCS episodes that recently occurred in Liguria, this work assesses the predictive capability of a hydrometeorological forecasting framework composed by a kilometer-scale cloud-resolving NWP model (WRF), including a 6-h cycling 3DVAR assimilation of radar reflectivity and conventional weather stations data, a rainfall downscaling model [Rainfall Filtered Autoregressive Model (RainFARM)], and a fully distributed hydrological model (Continuum). A rich portfolio of WRF 3DVAR direct and indirect reflectivity operators has been explored to drive the meteorological component of the proposed forecasting framework. The results confirm the importance of rapidly refreshing and data intensive 3DVAR for improving the quantitative precipitation forecast, and, subsequently, the flash flood prediction in cases of back-building MCS events.
The Mediterranean region is frequently struck by severe rainfall events causing numerous casualties and several million euros of damages every year. Thus, improving the forecast accuracy is a fundamental goal to limit social and economic damages. Numerical Weather Prediction (NWP) models are currently able to produce forecasts at the km scale grid spacing but unreliable surface information and a poor knowledge of the initial state of the atmosphere may produce inaccurate simulations of weather phenomena. The STEAM (SaTellite Earth observation for Atmospheric Modelling) project aims to investigate whether Sentinel satellites constellation weather observation data, in combination with Global Navigation Satellite System (GNSS) observations, can be used to better understand and predict with a higher spatio-temporal resolution the atmospheric phenomena resulting in severe weather events. Two heavy rainfall events that occurred in Italy in the autumn of 2017 are studied—a localized and short-lived event and a long-lived one. By assimilating a wide range of Sentinel and GNSS observations in a state-of-the-art NWP model, it is found that the forecasts benefit the most when the model is provided with information on the wind field and/or the water vapor content.
Severe weather events are responsible for hundreds of fatalities and millions of euros of damage every year on the Mediterranean basin. Lightning activity is a characteristic phenomenon of severe weather and often accompanies torrential rainfall, which, under certain conditions like terrain type, slope, drainage, and soil saturation, may turn into flash flood. Building on the existing relationship between significant lightning activity and deep convection and precipitation, the performance of the Lightning Potential Index, as a measure of the potential for charge generation and separation that leads to lightning occurrence in clouds, is here evaluated for the V‐shape back‐building Mesoscale Convective System which hit Genoa city (Italy) in 2014. An ensemble of Weather Research and Forecasting simulations at cloud‐permitting grid spacing (1 km) with different microphysical parameterizations is performed and compared to the available observational radar and lightning data. The results allow gaining a deeper understanding of the role of lightning phenomena in the predictability of V‐shape back‐building Mesoscale Convective Systems often producing flash flood over western Mediterranean complex topography areas. Moreover, they support the relevance of accurate lightning forecasting for the predictive ability of these severe events.
This paper presents the first experimental results of a study on the ingestion in the Weather Research and Forecasting (WRF) model, of Sentinel satellites and Global Navigation Satellite Systems (GNSS) derived products. The experiments concern a flash-floodevent occurred in Tuscany (Central Italy) in September 2017. The rationale is that numerical weather prediction (NWP) models are presently able to produce forecasts with a km scale spatial resolution, but the poor knowledge of the initial state of the atmosphere may imply an inaccurate simulation of the weather phenomena. Hence, to fully exploit the advances in numerical weather modelling, it is necessary to feed them with high spatiotemporal resolution information over the surface boundary and the atmospheric column. In this context, the Copernicus Sentinel satellites represent an important source of data, because they can provide a set of high-resolution observations of physical variables (e.g. soil moisture, land/sea surface temperature, wind speed) used in NWP models runs. The possible availability of a spatially dense network of GNSS stations is also exploited to assimilate water vapour content. Results show that the assimilation of Sentinel-1 derived wind field and GNSS-derivedwater vapour data produce the most positive effects on the performance of the forecast.
Along the Mediterranean coastlines, intense and localized rainfall events are responsible for numerous casualties and several million euros of damage every year. Numerical forecasts of such events are rarely skillful, because they lack information in their initial and boundary conditions at the relevant spatio-temporal scales, namely O(km) and O(h). In this context, the tropospheric delay observations (strongly related to the vertically integrated water vapor content) of the future geosynchronous Hydroterra satellite could provide valuable information at a high spatio-temporal resolution. In this work, Observing System Simulation Experiments (OSSEs) are performed to assess the impact of assimilating this new observation in a cloud-resolving meteorological model, at different grid spacing and temporal frequencies, and with respect to other existent observations. It is found that assimilating the Hydroterra observations at 2.5 km spacing every 3 or 6 h has the largest positive impact on the forecast of the event under study. In particular, a better spatial localization and extent of the heavy rainfall area is achieved and a realistic surface wind structure, which is a crucial element in the forecast of such heavy rainfall events, is modeled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.