Pandemics and re-emerging diseases put pressure on the health care system to prepare for patient care and sample logistics requiring enhanced personnel protective equipment (PPE) for health care workers. We generated quantifiable data on ergonomics of PPE applicable in a health care setting by defining error rates and physically limiting factors due to PPE-induced restrictions. Nineteen study volunteers tested randomly allocated head- or full body-ventilated PPE suits equipped with powered-air-purifying-respirators and performed four different tasks (two laboratory tutorials, a timed test of selective attention and a test investigating reaction time, mobility, speed and physical exercise) during 6 working hours at 22°C on one day and 4 working hours at 28°C on another day. Error rates and physical parameters (fluid loss, body temperature, heart rate) were determined and ergonomic-related parameters were assessed hourly using assessment sheets. Depending on the PPE system the most restrictive factors, which however had no negative impact on performance (speed and error rate), were: reduced dexterity due to multiple glove layers, impaired visibility by flexible face shields and back pain related to the respirator of the fully ventilated suit. Heat stress and liquid loss were perceived as restrictive at a working temperature of 28°C but not 22°C.
Information obtained from autopsies of patients infected with high-risk pathogens is an important pillar in managing a proper response to pandemics, particular in the early phase. This is due to the fact that autopsy allows efficient evaluation of comorbidities for risk assessment, as well as identification of key pathophysiological and molecular mechanisms in organs driving the severity of disease which might be important targets for therapeutic interventions. In the case of patients who have died of infection with unknown pathogens, isolation and culture of pathogens from the affected organs is another important opportunity for a proper response to (re)emerging infectious diseases. However, the situation of COVID-19 demonstrated that there were concerns about performing autopsies because of biosafety risks. In this review we compare requirements for biosafety level 3 (BSL-3) laboratories from the European Commission and the World Health Organization and summarize specific recommendations for postmortem analysis of COVID-19-deceased patients from the Centers for Disease Control and Prevention. Furthermore, we describe in detail a BSL-3 facility with enhanced protection of personnel and an environment that has been designed for performing autopsies, biobanking of collected tissue specimens, and culture of pathogens in cases of high-risk pathogen infections and report on the experience obtained in operating this facility in the context of COVID-19.
SummaryMolecular diagnostics in personalized medicine increasingly relies on the combination of a variety of analytical technologies to characterize individual diseases and to select patients for targeted therapies. The gold standard for tissue‐based diagnostics is fixation in formalin and embedding in paraffin, which results in excellent preservation of morphology but negatively impacts on a variety of molecular assays. The formalin‐free, non‐cross‐linking PAXgene tissue system preserves morphology in a similar way to formalin, but also preserves biomolecules essentially in a similar way to cryopreservation, which markedly widens the spectrum, sensitivity and accuracy of molecular analytics. In this study, we have developed and tested a protocol for PAXgene‐fixed and paraffin‐embedded tissues for fluorescent in situ hybridization (FISH). The implementation of a 24‐h formalin postfixation step of slides from PAXgene‐fixed and paraffin‐embedded tissues allowed us to use the assays approved for formalin‐fixed and paraffin‐embedded tissues. The equivalence of the methodologies was demonstrated by FISH analysis of HER2 amplification in breast cancer cases. The 24‐h postfixation step of the slides used for FISH can be well integrated in the routine diagnostic workflow and allows the remaining PAXgene‐fixed and paraffin‐embedded tissue to be used for further molecular testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.