Electric and thermoelectric transport properties are mutually intertangled in diffusive transport equations. In particular, in high mobility multiband systems an anomalous behavior may occur, which can be tracked down to the properties of the individual bands. Here, we present magnetoelectric and magnetothermoelectric transport properties of a BaFe 2 As 2 high-quality single crystal, for different magnetic field directions up to 30 T. We detect a giant Nernst effect and an anomalous field dependence of the Seebeck coefficient. The extraction of the Peltier tensor coefficients α xx , α xy , and α xz allows us to disentangle the main transport mechanisms in play. The large α xy and α xz values and their field dependence provide evidence of the presence of a high mobility band, compatible with a Dirac dispersion band, crossing the Fermi level, and suggest a possible three-dimensional nature of the Dirac fermions.
Anisotropy of transport and magnetic properties of parent compounds of iron based superconductors is a key ingredient of superconductivity. In this work, we investigate in-plane and out-of-plane properties, namely thermal, electric, thermoelectric transport and magnetic susceptibility in a high quality BaFe2As2 single crystal of the 122 parent compound, using a combined experimental and theoretical approach. Combining the ab initio calculation of the band structure and the measured in-plane and out-of-plane resistivity, we evaluate the scattering rates which turn out to be strongly anisotropic and determined by spin excitations in the antiferromagnetic state.
The observed anisotropy of thermal conductivity is discussed in terms of anisotropy of sound velocities which we estimate to be . Remarkably, we find that thermal conductivity is characterized by a sizeable electronic contribution at low temperature, which is ascribed to the high purity of our crystal.
The fabrication of a Fe-based coated conductor (CC) becomes possible when Fe(Se,Te) is grown as an epitaxial film on a metallic oriented substrate. Thanks to the material’s low structural anisotropy, less strict requirements on the template microstructure allow for the design of a simplified CC architecture with respect to the REBCO multi-layered layout. This design, though, still requires a buffer layer to promote the oriented growth of the superconducting film and avoid diffusion from the metallic template. In this work, Fe(Se,Te) films are grown on chemically-deposited, CeO2-based buffer layers via pulsed laser deposition, and excellent properties are obtained when a Fe(Se,Te) seed layer is used. Among all the employed characterization techniques, transmission electron microscopy proved essential to determine the actual effect of the seed layer on the final film properties. Also, systematic investigation of the full current transport properties J(θ, H, T) is carried out: Fe(Se,Te) samples are obtained with sharp superconducting transitions around 16 K and critical current densities exceeding 1 MA cm−2 at 4.2 K in self-field. The in-field and angular behavior of the sample are in line with data from the literature. These results are the demonstration of the feasibility of a Fe-based CC, with all the relative advantages concerning process simplification and cost reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.