Purpose: Gastrointestinal stromal tumors (GIST) are characterized by gain-of-function mutations in KIT/ PDGFRA genes leading to a constitutive receptor activation which is well counteracted by imatinib. However, cases in which imatinib as first-line treatment has no effects are reported (primary resistance). Our purpose is to investigate alterations in downstream effectors, not reported so far in mutated GIST, possibly explaining the primary resistance to targeted treatments.Experimental Design: Two independent naive GIST cohorts have been analyzed for KIT, PDGFRA, KRAS, and BRAF mutations by direct sequencing. Cell lines expressing a constitutively activated and imatinibresponding KIT, alone or in combination with activated KRAS and BRAF, were produced and treated with imatinib. KIT receptor and its downstream effectors were analyzed by direct Western blotting.Results: In naive GISTs carrying activating mutations in KIT or PDGFRA a concomitant activating mutation was detected in KRAS (5%) or BRAF (about 2%) genes. In vitro experiments showed that imatinib was able to switch off the mutated receptor KIT but not the downstream signaling triggered by RAS-RAF effectors.Conclusions: These data suggest the activation of mitogen-activated protein kinase pathway as a possible novel mechanism of primary resistance to imatinib in GISTs and could explain the survival curves obtained from several clinical studies where 2% to 4% of patients with GIST treated with imatinib, despite carrying KIT-sensitive mutations, do not respond to the treatment.
The use of cfDNA quantification to predict adenocarcinoma at an early stage in high-risk (aged >50 years and FOBT positive) subjects seems to be promising but needs more sensitive methods to improve cfDNA detection.
Excision repair cross-complementing gene 1 by IHC might predict patients more likely to benefit from adjuvant cisplatin-based chemotherapy in curatively resected gastric cancer. In patients exhibiting ERCC1 positive tumors, alternative regimens should be evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.