Energy flexibility in buildings is gaining momentum with the introduction of new European directives that enable buildings to manage their own energy demand and production, by storing, consuming or selling electricity according to their need. The transition towards a low-carbon energy system, through the promotion of on-site energy production and enhancement of self-consumption, can be supported by building-integrated photovoltaics (BIPV) technologies. This paper investigates the aesthetic and technological integration of hidden coloured PV modules in architecturally sensitive areas that seem to be the best possibility to favour a balance between conservation and energy issues. First, a multidisciplinary methodology for evaluating the aesthetic and technical integration of PV systems in architecturally sensitive area is proposed, referring to the technologies available on the market. Second, the experimental characterisation of the technical performance specific BIPV modules and their comparison with standard modules under standard weather condition are analysed, with the aim of acquiring useful data for comparing the modules’ integration properties and performance. For this purpose, new testbeds have been set up to investigate the aesthetic integration and the energy performances of innovative BIPV products. The paper describes the analyses carried out to define the final configuration of these experimental testbeds. Finally, the experimental characterisation at standard test conditions of two coloured BIPV modules is presented and the experimental design for the outdoor testing is outlined.
The urbanization process is constantly increasing worldwide. Today over 50 % of the population resides in urban areas and this value is expected to grow up to 68 % by 2050. In this scenario, the development of district scale energy grids and management systems has become crucial to optimize energy use and to balance energy flows within the cities, encouraging the use of renewable sources and self-consumption. This study focusses on a district under development in the city of Milan, involving an urban area of about 920 000 m2, which, once completed, will count for about 4 500 apartments, a school and a few other commercial uses. The existing energy systems consist of an electric grid, including a small photovoltaic field, a district heating system and a local district cooling system exploiting groundwater via heat pumps. They serve, at present, seven residential tower buildings (400 apartments). The overarching aim of the research is to evolve the existing grid into a smart energy grid able to guarantee an intelligent management of the district, empowering eventually people to apply for demand-response schemes, electric mobility and other innovative services. In order to perform such an improvement and extension of the exiting grid, it is necessary to evaluate and simulate the profiles and dynamics of the final energy uses for the residential buildings, that will represent the major load on site. Since monitoring data are not yet available for the district, the evaluation of the energy performance of the existing buildings has been developed through dynamic energy simulations via the definition of profile loads of the most frequent apartment typologies, that allow, moreover, to simulate further developments in the districts. Besides, a monitoring plan for the existing systems has been developed and implemented. Monitoring data will be used at first for validating the developed load profiles; then, they will be analysed to develop optimisation algorithms for the management of the upgraded energy grid. In this paper, the case study is presented and the results of the analysis, via energy simulation, on the existing building stock are reported.
Coloured building integrated photovoltaics (BIPVs) may contribute to meeting the decarbonisation targets of European and other countries. Nevertheless, their market uptake has been hindered by a lack of social acceptance, technical issues, and low economic profitability. Being able to assess in advance the influence of the coloured layers on a module’s power generation may help reduce the need for prototyping, thereby allowing optimisation of the product performance by reducing the time and costs of customised manufacturing. Therefore, this review aims at investigating the available literature on models and techniques used for assessing the influence of coloured layers on power generation in customised BIPV products. Existing models in the literature use two main approaches: (i) detailed optical modelling of the layers in the module’s stack, including coloured layers, and (ii) mathematical elaboration of the final product’s measured characteristics. Combining the two approaches can provide improved future models, which can accurately assess every single layer in the module’s stack starting from measured parameters obtained with simpler equipment and procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.