Purpose-The benefit of computer-assisted navigation depends on the registration process, at which patient features are correlated to some preoperative imagery. The operator-induced uncertainty in localizing patient features -the User Localization Error (ULE) -is unknown and most likely dominating the application accuracy. This initial feasibility study aims at providing first data for ULE with a research navigation system. Methods-Active optical navigation was done in CT-images of a plastic skull, an anatomic specimen (both with implanted fiducials) and a volunteer with anatomical landmarks exclusively. Each object was registered ten times with 3, 5, 7, and 9 registration points. Measurements were taken at 10 (anatomic specimen and volunteer) and 11 targets (plastic skull). The active NDI Polaris system was used under ideal working conditions (tracking accuracy 0.23 mm root mean square, RMS; probe tip calibration was 0.18 mm RMS. Variances of tracking along the principal directions were measured as 0.18 mm 2 , 0.32 mm 2 , and 0.42 mm 2 . ULE was calculated from predicted application accuracy with isotropic and anisotropic models and from experimental variances, respectively.Results-The ULE was determined from the variances as 0.45 mm (plastic skull), 0.60 mm (anatomic specimen), and 4.96 mm (volunteer). The predicted application accuracy did not yield consistent values for the ULE.The authors declare not to have any conflict of interest. Europe PMC Funders GroupAuthor Manuscript Med Phys. Author manuscript; available in PMC 2013 July 03. Europe PMC Funders Author Manuscripts Europe PMC Funders Author ManuscriptsConclusions-Quantitative data of application accuracy could be tested against prediction models with iso-and anisotropic noise models and revealed some discrepancies. This could potentially be due to the facts that navigation and one prediction model wrongly assume isotropic noise (tracking is anisotropic), while the anisotropic noise prediction model assumes an anisotropic registration strategy (registration is isotropic in typical navigation systems). The ULE data are presumably the first quantitative values for the precision of localizing anatomical landmarks and implanted fiducials. Submillimetric localization is possible for implanted screws; anatomic landmarks are not suitable for high-precision clinical navigation.
Purpose The target registration error (TRE) is a crucial parameter to estimate the potential usefulness of computerassisted navigation intraoperatively. Both image-to-patient registration on base of rigid-body registration and TRE prediction methods are available for spatially isotropic and anisotropic data. This study presents a thorough validation of data obtained in an experimental operating room setting with CT images. Methods Optical tracking was used to register a plastic skull, an anatomic specimen, and a volunteer to their respective CT images. Plastic skull and anatomic specimen had implanted bone fiducials for registration; the volunteer was registered with anatomic landmarks. Fiducial localization error, fiducial registration error, and total target error (TTE) were measured; the TTE was compared to isotropic and anisotropic error prediction models. Numerical simulations of the experiment were done additionally. Results The user localization error and the TTE were measured and calculated using predictions, both leading to results as expected for anatomic landmarks and screws used as fiducials. TRE/TTE is submillimetric for the plastic skull and the anatomic specimen. In the experimental data a medium correlation was found between TRE and target localization error (TLE). Most of the predictions of the application accuracy (TRE) fall in the 68% confidence interval of the measured TTE. For the numerically simulated data, a prediction of TTE was not possible; TRE and TTE show a negligible correlation. B Martina Perwög
PurposeComputer-aided navigation is widely used in ENT surgery. The position of a surgical instrument is shown in the CT/MR images of the patient and can thus be a good support for the surgeon. The accuracy is highly dependent on the registration done prior to surgery. A microscope and a probe can both be used for registration and navigation, depending on the surgical intervention. A navigation system typically only reports the fiducial registration error after paired-point registration. However, the target registration error (TRE)—a measurement for the accuracy in the surgical area—is much more relevant. The aim of this work was to compare the performance of a microscope relative to a conventional probe-based approach with different registration methods.MethodsIn this study, optical tracking was used to register a plastic skull to its preoperative CT images with paired-point registration. Anatomical landmarks and skin-affixed markers were used as fiducials and targets. With both microscope and probe, four different registration methods were evaluated based on their TREs at 10 targets. For half of the experiments, a surface registration and/or external fiducials were used additionally to paired-point registration to study their influence to accuracy.ResultsOverall, probe registration leads to a smaller TRE () than registration with a microscope (). Additional surface registration does not result in better accuracy of navigation for microscope and probe. The lowest mean TRE for both pointers can be achieved with paired-point registration only and radiolucent markers.ConclusionOur experiments showed that a probe used for registration and navigation achieves lower TREs compared using a microscope. Neither additional surface registration nor additional fiducials on an external reference element are necessary for improved accuracy of navigated ENT surgery on a plastic skull.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.