Wnt signalling is an evolutionarily conserved pathway that directs cell-fate determination and morphogenesis during metazoan development. Wnt ligands are secreted glycoproteins that act at a distance causing a wide range of cellular responses from stem cell maintenance to cell death and cell proliferation. How Wnt ligands cause such disparate responses is not known, but one possibility is that different outcomes are due to different receptors. Here, we examine PTK7/Otk, a transmembrane receptor that controls a variety of developmental and physiological processes including the regulation of cell polarity, cell migration and invasion. PTK7/Otk co-precipitates canonical Wnt3a and Wnt8, indicating a role in Wnt signalling, but PTK7 inhibits rather than activates canonical Wnt activity in Xenopus, Drosophila and luciferase reporter assays. Loss of PTK7 function activates canonical Wnt signalling and epistasis experiments place PTK7 at the level of the Frizzled receptor. In Drosophila, Otk interacts with Wnt4 and opposes canonical Wnt signalling in embryonic patterning. We propose a model where PTK7/Otk functions in non-canonical Wnt signalling by turning off the canonical signalling branch.
FLT3 is a receptor tyrosine kinase involved in the proliferation and differentiation of hematopoietic stem cells. FLT3 internal tandem duplications (FLT3/ITDs) are reported in acute myeloid leukemia (AML) and predict poor clinical outcome. We found FLT3/ITDs in 11.5% of 234 children with de novo AML. FLT3/ITD-positive patients were significantly older and had higher percentages of normal cytogenetic findings or French-American-British (FAB) classification M1/M2 and lower percentages of 11q23 abnormalities or FAB M5. FLT3/ITD-positive patients had lower remission induction rates (70% vs 88%; P ؍ .01) and lower 5-year probability rates of event-free survival (pEF) (29% vs 46%; P ؍ .0046) and overall survival (32% vs 58%; P ؍ .037). Patients with high ratios (higher than the median) between mutant and wild-type FLT3 had significantly worse 2-year EFS rates than FLT3/ITD-negative patients (pEFS 20% vs 61%; P ؍ .037), whereas patients with ratios lower than the median did not (pEFS 44% vs 61%; P ؍ .26). FLT3/ITD was the strongest independent predictor for pEFS, with an increase in relative risk for an event of 1.92 (P ؍ .01). Using an MTT (methyl-thiazol-tetrazolium)-based assay, we studied cellular drug resistance on 15 FLT3/ITD-positive and 125 FLT3/ITD-negative AML samples, but we found no differences in cellular drug resistance that could explain the poor outcomes in FLT3/ ITD-positive patients. We conclude that FLT3/ITD is less common in pediatric than in adult AML. FLT3/ITD is a strong and independent adverse prognostic factor, and high ratios between mutant and WT-FLT3 further compromise prognosis. However, poor outcomes in FLT3/ITDpositive patients could not be attributed to increased in vitro cellular drug resistance. (Blood. 2003;102:2387-2394)
Chronic myeloid leukemia (CML) is characterized by the presence of a t(9;22)(q34;q11.2), which leads to the well-known BCR-ABL1 fusion protein. We describe a patient who was diagnosed clinically with a typical CML but on cytogenetic analysis was found to have a t(9;22)(p24;q11.2). Chromosomal fluorescence in situ hybridization showed that the BCR gene locus spanned the breakpoint at band 22q11.2 but that the ABL1 gene was not rearranged. By means of a candidate gene approach, the JAK2 gene, at 9p24, was identified as the fusion partner of BCR in this case. The BCR-JAK2 fusion protein contains the coiled-coil dimerization domain of BCR and the protein tyrosine kinase domain (JH1) of JAK2. The patient's disease did not respond to Imatinib, and this unresponsiveness was most likely a result of the BCR-JAK2 fusion protein.
Protein tyrosine kinase 7 (PTK7) is an evolutionarily conserved transmembrane receptor with important roles in embryonic development and disease. Originally identified as a gene upregulated in colon cancer, it was later shown to regulate planar cell polarity (PCP) and directional cell movement. PTK7 is a Wnt co-receptor; however, its role in Wnt signaling remains controversial. Here, we find evidence that places PTK7 at the intersection of canonical and non-canonical Wnt signaling pathways. In presence of canonical Wnt ligands PTK7 is subject to caveolin-mediated endocytosis, while it is unaffected by non-canonical Wnt ligands. PTK7 endocytosis is dependent on the presence of the PTK7 co-receptor Fz7 (also known as Fzd7) and results in lysosomal degradation of PTK7. As we previously observed that PTK7 activates non-canonical PCP Wnt signaling but inhibits canonical Wnt signaling, our data suggest a mutual inhibition of canonical and PTK7 Wnt signaling. PTK7 likely suppresses canonical Wnt signaling by binding canonical Wnt ligands thereby preventing their interaction with Wnt receptors that would otherwise support canonical Wnt signaling. Conversely, if canonical Wnt proteins interact with the PTK7 receptor, they induce its internalization and degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.