Recently-developed capabilities for tracking the movements of individual birds over the course of a year or longer has provided increasing evidence for consistent individual differences in migration schedules and destinations. This raises questions about the relative importance of individual consistency versus flexibility in the evolution of migration strategies, and has implications for the ability of populations to respond to climatic change. Using geolocators, we tracked the migrations of Scopoli’s shearwaters Calonectris diomedea breeding in Linosa (Italy) across three years, and analysed timing and spatial aspects of their movements. Birds showed remarkable variation in their main wintering destination along the western coast of Africa. We found significant individual consistency in the total distance traveled, time spent in transit, and time that individuals spent in the wintering areas. We found extensive sex differences in scheduling, duration, distances and destinations of migratory journeys. We also found sex differences in the degree of individual consistency in aspects of migration behaviour. Despite strong evidence for individual consistency, which indicates that migration journeys from the same bird tended to be more similar than those of different birds, there remained substantial intra-individual variation between years. Indeed, we also found clear annual differences in departure dates, return dates, wintering period, the total distance traveled and return routes from wintering grounds back to the colony. These findings show that this population flexibly shifts migration schedules as well as routes between years in response to direct or indirect effects of heterogeneity in the environment, while maintaining consistent individual migration strategies.
Wildlife migration is a spectacular phenomenon [1]. Studies using telemetry - tracking devices attached on free-living animals - have shown that large topographic barriers and obstacles, such as oceans and deserts, elicit extreme feats of migration [2]. Overcoming the challenges of these obstacles might require experience and skill that young individuals lack [2-5]. Further, younger, inexperienced animals might determine their migration routes using navigation strategies different from those of older animals [6-9], but our knowledge of how orientation mechanisms and experience drive migration strategy is limited. We have studied how experienced (adults) and inexperienced (first-time migrating fledglings) streaked shearwaters (Calonectris leucomelas) approach the challenge of migration using animal-borne tracking devices. The study birds migrate from a colony on the north of a large topographic barrier, Honshu Island, Japan. Shearwaters use a wind- and wave-based flight pattern-dynamic soaring-to extract energy for highly efficient travel over oceans [10]. We therefore expected that shearwaters migrating southward from the colony would make substantial detours to avoid any landmasses. We found that migrating adults followed one of two paths that detour around landmasses that hinder direct southerly migration. In contrast, inexperienced fledglings followed a straight course in a south-oriented direction that forced them to complete a trans-mountain journey, suggesting that the birds rely on an innate compass. Thus, we suggest that fledglings would eventually override the simple compass navigation, which appears to be the primary driver for their extreme migration, before being able to interact appropriately with the marine environment.
Most tropical booby species complete breeding foraging trips within daylight hours, thus avoiding nights at sea. Nazca Boobies Sula granti are unusual in this respect, frequently spending one or more nights away from the nest. We used GPS dataloggers, time‐depth recorders, and changes in body weight to characterize foraging trips and to evaluate potential influences on the decisions of 64 adult Nazca Boobies to spend a night at sea, or to return to their chicks on Isla Española, Galápagos, in daylight hours. The tagged birds foraged east of Isla Española, undertaking both single‐day (2–15 h, 67% of trips) and overnight trips (28 h–7.2 days, 33%), and executing 1–19 foraging plunge‐dives per single‐day trip. Birds might forage longer if they are in nutritional stress when they depart, but body weight at departure was not correlated with trip length. Birds might be expected to return from longer trips with more prey for young, but they returned from single‐day and overnight trips with similar body weights, consistent with previous indications that Nazca Boobies forage until accumulating a target value of prey weight. Birds with a lower dive frequency during the first 5 h of a trip were more likely to spend the night at sea, suggesting that they might choose to spend the night at sea if prey capture success was low. At night, birds almost never dived and spent most of their time resting on the water’s surface (11.8–12.1 h, > 99% of the time between civil sunset and civil dawn). Thus, the night is an unproductive time spent among subsurface predators under low illumination. The birds’ webbed feet provided evidence of this risk: 24% of birds were missing > 25% of their foot tissue, probably due to attacks by predatory fish, and the amount of foot tissue lost increased with age, consistent with a cumulative risk across the lifespan. In contrast, other tropical boobies (Blue‐footed Sula nebouxii and Brown Boobies Sula leucogaster), which do not spend the night on the water, showed no such damage. These results suggest that chick‐rearing Nazca Boobies accept nocturnal predation risk on occasions of low prey encounter during a foraging trip’s first day.
Dryad data: http://dx.doi.org/10.5061/dryad.b87j7.abstract: In many species, embryos are exposed to maternal hormones in utero, in the egg, or in the seed. In birds, mothers deposit substantial testosterone into their eggs, which enhances competitive ability of offspring. These maternal testosterone concentrations vary systematically within clutches in different patterns and may enable mothers to adaptively fine-tune competitive hierarchies within broods. We performed a comparative analysis to investigate this hypothesis using a broad set of avian species. We expected species with small size differences among siblings (arising from small hatching asynchrony or slow growth rates) to aim for survival of the whole brood in good years and therefore compensate last-hatching eggs with relatively more testosterone. We expected species with large size differences among siblings (large hatching asynchrony or fast growth rates) to produce surplus young as insurance against failed offspring and to facilitate elimination of redundant surplus young by bestowing last-hatching eggs with relatively less testosterone. As predicted, we found that maternal testosterone compensation to last-hatching eggs is stronger when size differences among siblings become smaller. Maternal testosterone compensation to last-hatching eggs also correlated negatively with hatching asynchrony and growth rates. These findings provide evidence for correlated evolution of several maternal effects that together support different maternal reproductive strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.