Unraveling the genetic susceptibility of complex diseases such as chronic kidney disease remains challenging. Here, we used inbred rat models of kidney damage associated with elevated blood pressure for the comprehensive analysis of a major albuminuria susceptibility locus detected in these models. We characterized its genomic architecture by congenic substitution mapping, targeted next-generation sequencing, and compartment-specific RNA sequencing analysis in isolated glomeruli. This led to prioritization of transmembrane protein Tmem63c as a novel potential target. Tmem63c is differentially expressed in glomeruli of allele-specific rat models during onset of albuminuria. Patients with focal segmental glomerulosclerosis exhibited specific TMEM63C loss in podocytes. Functional analysis in zebrafish revealed a role for tmem63c in mediating the glomerular filtration barrier function. Our data demonstrate that integrative analysis of the genomic architecture of a complex trait locus is a powerful tool for identification of new targets such as Tmem63c for further translational investigation.
BackgroundKidney transplantation (ktx) in mice is used to learn about rejection and to develop new treatment strategies. Past studies have mainly been based on histological or molecular biological methods. Imaging techniques to monitor allograft pathology have rarely been used.MethodsHere we investigated mice after isogenic and allogenic ktx over time with functional MRI with diffusion-weighted imaging (DWI) and mapping of T2-relaxation time (T2-mapping) to assess graft inflammation and edema formation. To characterize graft pathology, we used PAS-staining, counted CD3-positive T-lymphocytes, analyzed leukocytes by means flow cytometry.ResultsDWI revealed progressive restriction of diffusion of water molecules in allogenic kidney grafts. This was paralleled by enhanced infiltration of the kidney by inflammatory cells. Changes in tissue diffusion were not seen following isogenic ktx. T2-times in renal cortex were increased after both isogenic and allogenic transplantation, consistent with tissue edema due to ischemic injury following prolonged cold ischemia time of 60 minutes. Lack of T2 increase in the inner stripe of the inner medulla in allogenic kidney grafts matched loss of tubular autofluorescence and may result from rejection-driven reductions in tubular water content due to tubular dysfunction and renal functional impairment.ConclusionsFunctional MRI is a valuable non-invasive technique for monitoring inflammation, tissue edema and tubular function. It permits on to differentiate between acute rejection and ischemic renal injury in a mouse model of ktx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.