In the past 10 years, the number of endosymbionts described within the bacterial order Rickettsiales has constantly grown. Since 2006, 18 novel Rickettsiales genera inhabiting protists, such as ciliates and amoebae, have been described. In this work, we characterize two novel bacterial endosymbionts from Paramecium collected near Bloomington, IN. Both endosymbiotic species inhabit the cytoplasm of the same host. The Gram-negative bacterium “Candidatus Bealeia paramacronuclearis” occurs in clumps and is frequently associated with the host macronucleus. With its electron-dense cytoplasm and a distinct halo surrounding the cell, it is easily distinguishable from the second smaller symbiont, “Candidatus Fokinia cryptica,” whose cytoplasm is electron lucid, lacks a halo, and is always surrounded by a symbiontophorous vacuole. For molecular characterization, the small-subunit rRNA genes were sequenced and used for taxonomic assignment as well as the design of species-specific oligonucleotide probes. Phylogenetic analyses revealed that “Candidatus Bealeia paramacronuclearis” clusters with the so-called “basal” Rickettsiales, and “Candidatus Fokinia cryptica” belongs to “Candidatus Midichloriaceae.” We obtained tree topologies showing a separation of Rickettsiales into at least two groups: one represented by the families Rickettsiaceae, Anaplasmataceae, and “Candidatus Midichloriaceae” (RAM clade), and the other represented by “basal Rickettsiales,” including “Candidatus Bealeia paramacronuclearis.” Therefore, and in accordance with recent publications, we propose to limit the order Rickettsiales to the RAM clade and to raise “basal Rickettsiales” to an independent order, Holosporales ord. nov., inside Alphaproteobacteria, which presently includes four family-level clades. Additionally, we define the family “Candidatus Hepatincolaceae” and redefine the family Holosporaceae.IMPORTANCE In this paper, we provide the characterization of two novel bacterial symbionts inhabiting the same Paramecium host (Ciliophora, Alveolata). Both symbionts belong to “traditional” Rickettsiales, one representing a new species of the genus “Candidatus Fokinia” (“Candidatus Midichloriaceae”), and the other representing a new genus of a “basal” Rickettsiales. According to newly characterized sequences and to a critical revision of recent literature, we propose a taxonomic reorganization of “traditional” Rickettsiales that we split into two orders: Rickettsiales sensu stricto and Holosporales ord. nov. This work represents a critical revision, including new records of a group of symbionts frequently occurring in protists and whose biodiversity is still largely underestimated.
“Neglected Rickettsiaceae” (i.e. those harboured by non-hematophagous eukaryotic hosts) display greater phylogenetic variability and more widespread dispersal than pathogenic ones; yet, the knowledge about their actual host range and host shift mechanism is scarce. The present work reports the characterization following the full-cycle rRNA approach (SSU rRNA sequence, specific in situ hybridization, and ultrastructure) of a novel rickettsial bacterium, herewith proposed as 'Candidatus Megaira polyxenophila' gen. nov., sp. nov. We found it in association with four different free-living ciliates (Diophrys oligothrix, Euplotes octocarinatus, Paramecium caudatum, and Spirostomum sp., all belonging to Alveolata, Ciliophora); furthermore it was recently observed as intracellular occurring in Carteria cerasiformis and Pleodorina japonica (Chlorophyceae, Chlorophyta). Phylogenetic analyses demonstrated the belonging of the candidate new genus to the family Rickettsiaceae (Alphaproteobacteria, Rickettsiales) as a sister group of the genus Rickettsia. In situ observations revealed the ability of the candidate new species to colonize either nuclear or cytoplasmic compartments, depending on the host organism. The presence of the same bacterial species within different, evolutionary distant, hosts indicates that 'Candidatus Megaira polyxenophila' recently underwent several distinct host shifts, thus suggesting the existence of horizontal transmission pathways. We consider these findings as indicative of an unexpected spread of rickettsial infections in aquatic communities, possibly by means of trophic interactions, and hence propose a new interpretation of the origin and phylogenetic diversification of rickettsial bacteria.
The genus Holospora (Rickettsiales) includes highly infectious nuclear symbionts of the ciliate Paramecium with unique morphology and life cycle. To date, nine species have been described, but a molecular characterization is lacking for most of them. In this study, we have characterized a novel Holospora-like bacterium (HLB) living in the macronuclei of a Paramecium jenningsi population. This bacterium was morphologically and ultrastructurally investigated in detail, and its life cycle and infection capabilities were described. We also obtained its 16S rRNA gene sequence and developed a specific probe for fluorescence in situ hybridization experiments. A new taxon, "Candidatus Gortzia infectiva", was established for this HLB according to its unique characteristics and the relatively low DNA sequence similarities shared with other bacteria. The phylogeny of the order Rickettsiales based on 16S rRNA gene sequences has been inferred, adding to the available data the sequence of the novel bacterium and those of two Holospora species (Holospora obtusa and Holospora undulata) characterized for the purpose. Our phylogenetic analysis provided molecular support for the monophyly of HLBs and showed a possible pattern of evolution for some of their features. We suggested to classify inside the family Holosporaceae only HLBs, excluding other more distantly related and phenotypically different Paramecium endosymbionts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.