This protocol describes the preparation of highly viable adult ventricular myocardial slices from the hearts of small and large mammals, including rodents, pigs, dogs and humans. Adult ventricular myocardial slices are 100- to 400-μm-thick slices of living myocardium that retain the native multicellularity, architecture and physiology of the heart. This protocol provides a list of the equipment and reagents required alongside a detailed description of the methodology for heart explantation, tissue preparation, slicing with a vibratome and handling of myocardial slices. Supplementary videos are included to visually demonstrate these steps. A number of critical steps are addressed that must be followed in order to prepare highly viable myocardial slices. These include identification of myocardial fiber direction and fiber alignment within the tissue block, careful temperature control, use of an excitation-contraction uncoupler, optimal vibratome settings and correct handling of myocardial slices. Many aspects of cardiac structure and function can be studied using myocardial slices in vitro. Typical results obtained with hearts from a small mammal (rat) and a large mammal (human) with heart failure are shown, demonstrating myocardial slice viability, maximum contractility, Ca handling and structure. This protocol can be completed in ∼4 h.
AimsCardiac fibroblasts (CFs) are considered the principal regulators of cardiac fibrosis. Factors that influence CF activity are difficult to determine. When isolated and cultured in vitro, CFs undergo rapid phenotypic changes including increased expression of α-SMA. Here we describe a new model to study CFs and their response to pharmacological and mechanical stimuli using in vitro cultured mouse, dog and human myocardial slices.Methods and resultsUnloading of myocardial slices induced CF proliferation without α-SMA expression up to 7 days in culture. CFs migrating onto the culture plastic support or cultured on glass expressed αSMA within 3 days. The cells on the slice remained αSMA(−) despite transforming growth factor-β (20 ng/ml) or angiotensin II (200 µM) stimulation. When diastolic load was applied to myocardial slices using A-shaped stretchers, CF proliferation was significantly prevented at Days 3 and 7 (P < 0.001).ConclusionsMyocardial slices allow the study of CFs in a multicellular environment and may be used to effectively study mechanisms of cardiac fibrosis and potential targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.