The TPP1/ACD protein (hereafter TPP1) is a component of the shelterin complex at mammalian telomeres. Here we find that Tpp1-deficient mouse embryonic fibroblasts (MEFs) show increased chromosomal instability including sister chromatid fusions and chromosomes with multitelomeric signals related to telomere fragility. Tpp1 deletion decreases both TERT (the telomerase catalytic subunit) binding to telomeres in MEFs and telomerase function at chromosome ends in vivo. Abrogation of Tpp1 abolished net telomere elongation in the context of nuclear reprogramming of MEFs into induced pluripotent stem cells, whereas Tpp1 deletion in stratified epithelia of Tpp1(Delta/Delta)K5-Cre mice resulted in perinatal death, severe skin hyperpigmentation, and impaired hair follicle morphogenesis. p53 deficiency rescues skin hyperpigmentation and hair growth in these mice, indicating that p53 restricts proliferation of Tpp1-deficient cells. These results suggest a telomere-capping model where TPP1 protects telomere integrity and regulates telomerase recruitment to telomeres, thereby preventing early occurrence of degenerative pathologies.
Telomeres are transcribed from the telomeric C-rich strand, giving rise to UUAGGG repeatcontaining telomeric transcripts or TERRA, which are novel structural components of telomeres. TERRA abundance is highly dependent on developmental status (including nuclear reprogramming), telomere length, cellular stresses, tumour stage and chromatin structure. However, the molecular mechanisms and factors controlling TERRA levels are still largely unknown. In this study, we identify a set of RNA-binding proteins, which endogenously bind and regulate TERRA in the context of primary mouse embryonic fi broblasts. The identifi cation was carried out by biotin pull-down assays followed by LC-MALDI TOF / TOF mass spectrometry. Different members of the heterogeneous nuclear ribonucleoprotein family are among the ribonucleoprotein family that bind more abundantly to TERRA. Downregulation of TERRA-bound RBPs by small interfering RNA further shows that they can impact on TERRA abundance, their location and telomere lengthening. These fi ndings anticipate an impact of TERRA-associated RBPs on telomere biology and telomeres diseases, such as cancer and aging.
Daxx has been implicated in the modulation of apoptosis in response to various stimuli. In the nucleus, Daxx interacts and colocalizes with the promyelocytic leukemia protein (PML) into the PML-nuclear body. Moreover, overexpressed Daxx positively modulates FAS-ligand and TGFb-induced apoptosis. However, recent reports indicate that Daxx can also act as an antiapoptotic factor. As most studies on the role of Daxx in cell death have been conducted using tumour cell lines, we analysed the function of Daxx in physiological settings. We found that Daxx is induced upon exposure to ultraviolet (UV) irradiation and hydrogen peroxide treatment. We employed RNA interference to downregulate Daxx in primary fibroblasts. Remarkably, Daxx-depleted cells are resistant to cell death induced by both UV irradiation and oxidative stress. Furthermore, the downregulation of Daxx results in impaired MKK/c-Jun-N-terminal kinase (JNK) activation. This is the first evidence that Daxx promotes cell death and JNK activation in physiological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.