Objective: To examine the regulatory aspects of zinc-a2-glycoprotein (ZAG) association with obesityrelated insulin resistance. Methods: ZAG mRNA and protein were analyzed in subcutaneous adipose tissue (AT) and circulation of lean, obese, prediabetic, and type 2 diabetic men; both subcutaneous and visceral AT were explored in lean and extremely obese. Clinical and ex vivo findings were corroborated by results of in vitro ZAG silencing experiment. Results: Subcutaneous AT ZAG was reduced in obesity, with a trend to further decrease with prediabetes and type 2 diabetes. ZAG was 3.3-fold higher in subcutaneous than in visceral AT of lean individuals. All differences were lost in extreme obesity. Obesity-associated changes in AT were not paralleled by alterations of circulating ZAG. Subcutaneous AT ZAG correlated with adiposity, adipocyte hypertrophy, whole-body and AT insulin sensitivity, mitochondrial content, expression of GLUT4, PGC1a, and adiponectin. Subcutaneous AT ZAG and adipocyte size were the only predictors of insulin sensitivity, independent on age and BMI. Silencing ZAG resulted in reduced adiponectin, IRS1, GLUT4, and PGC1a gene expression in primary human adipocytes. Conclusions: ZAG in subcutaneous, but not in visceral AT, was markedly reduced in obesity. Clinical, cellular, and molecular evidence indicate that ZAG plays an important role in modulating whole-body and AT insulin sensitivity.
BackgroundIn the present study we aimed: 1) To establish the prevalence and clinical impact of DFNB49 mutations in deaf Roma from 2 Central European countries (Slovakia and Hungary), and 2) to analyze a possible common origin of the c.1331+2T>C mutation among Roma and Pakistani mutation carriers identified in the present and previous studies.MethodsWe sequenced 6 exons of the MARVELD2 gene in a group of 143 unrelated hearing impaired Slovak Roma patients. Simultaneously, we used RFLP to detect the c.1331+2T>C mutation in 85 Hungarian deaf Roma patients, control groups of 702 normal hearing Romanies from both countries and 375 hearing impaired Slovak Caucasians. We analyzed the haplotype using 21 SNPs spanning a 5.34Mb around the mutation c.1331+2T>C.ResultsOne pathogenic mutation (c.1331+2T>C) was identified in 12 homozygous hearing impaired Roma patients. Allele frequency of this mutation was higher in Hungarian (10%) than in Slovak (3.85%) Roma patients. The identified common haplotype in Roma patients was defined by 18 SNP markers (3.89 Mb). Fourteen common SNPs were also shared among Pakistani and Roma homozygotes. Biallelic mutation carriers suffered from prelingual bilateral moderate to profound sensorineural hearing loss.ConclusionsWe demonstrate different frequencies of the c.1331+2T>C mutation in hearing impaired Romanies from 3 Central European countries. In addition, our results provide support for the hypothesis of a possible common ancestor of the Slovak, Hungarian and Czech Roma as well as Pakistani deaf patients. Testing for the c.1331+2T>C mutation may be recommended in GJB2 negative Roma cases with early-onset sensorineural hearing loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.