This paper connects two large research areas, namely sentiment analysis and human–robot interaction. Emotion analysis, as a subfield of sentiment analysis, explores text data and, based on the characteristics of the text and generally known emotional models, evaluates what emotion is presented in it. The analysis of emotions in the human–robot interaction aims to evaluate the emotional state of the human being and on this basis to decide how the robot should adapt its behavior to the human being. There are several approaches and algorithms to detect emotions in the text data. We decided to apply a combined method of dictionary approach with machine learning algorithms. As a result of the ambiguity and subjectivity of labeling emotions, it was possible to assign more than one emotion to a sentence; thus, we were dealing with a multi-label problem. Based on the overview of the problem, we performed experiments with the Naive Bayes, Support Vector Machine and Neural Network classifiers. Results obtained from classification were subsequently used in human–robot experiments. Despise the lower accuracy of emotion classification, we proved the importance of expressing emotion gestures based on the words we speak.
Lung ultrasound is used to detect various artifacts in the lungs that support the diagnosis of different conditions. There is ongoing research to support the automatic detection of such artifacts using machine learning. We propose a solution that uses analytical computer vision methods to detect two types of lung artifacts, namely A- and B-lines. We evaluate the proposed approach on the POCUS dataset and data acquired from a hospital. We show that by using the Fourier transform, we can analyze lung ultrasound images in real-time and classify videos with an accuracy above 70%. We also evaluate the method’s applicability for segmentation, showcasing its high success rate for B-lines (89% accuracy) and its shortcomings for A-line detection. We then propose a hybrid solution that uses a combination of neural networks and analytical methods to increase accuracy in horizontal line detection, emphasizing the pleura.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.