Background: Motor inhibition is a complex cognitive function regulated by specific brain regions and influenced by the activity of the Central Autonomic Network. We investigate the two-way Brain–Heart interaction during a Go/NoGo task. Spectral EEG ϑ, α powerbands, and HRV parameters (Complexity Index (CI), Low Frequency (LF) and High Frequency (HF) powers) were recorded. Methods: Fourteen healthy volunteers were enrolled. We used a modified version of the classical Go/NoGo task, based on Rule Shift Cards, characterized by a baseline and two different tasks of different complexity. The participants were divided into subjects with Good (GP) and Poor (PP) performances. Results: In the baseline, CI was negatively correlated with α/ϑ. In task 1, the CI was negatively correlated with the errors and α/ϑ, while the errors were positively correlated with α/ϑ. In task 2, CI was negatively correlated with the Reaction Time and positively with α, and the errors were negatively correlated with the Reaction Time and positively correlated with α/ϑ. The GP group showed, at baseline, a negative correlation between CI and α/ϑ. Conclusions: We provide a new combined Brain–Heart model underlying inhibitory control abilities. The results are consistent with the complementary role of α and ϑ oscillations in cognitive control.
Disorders of Consciousness (DOC) are a spectrum of pathologies affecting one’s ability to interact with the external world. Two possible conditions of patients with DOC are Unresponsive Wakefulness Syndrome/Vegetative State (UWS/VS) and Minimally Conscious State (MCS). Analysis of spontaneous EEG activity and the Heart Rate Variability (HRV) are effective techniques in exploring and evaluating patients with DOC. This study aims to observe fluctuations in EEG and HRV parameters in the morning/afternoon resting-state recording. The study enrolled 13 voluntary Healthy Control (HC) subjects and 12 DOC patients (7 MCS, 5 UWS/VS). EEG and EKG were recorded. PSDalpha, PSDtheta powerband, alpha-blocking, alpha/theta of the EEG, Complexity Index (CI) and SDNN of EKG were analyzed. Higher values of PSDalpha, alpha-blocking, alpha/theta and CI values and lower values of PSD theta characterized HC individuals in the morning with respect to DOC patients. In the afternoon, we detected a significant difference between groups in the CI, PSDalpha, PSDtheta, alpha/theta and SDNN, with lower PSDtheta value for HC. CRS-R scores showed a strong correlation with recorded parameters mainly during evaluations in the morning. Our finding put in evidence the importance of the assessment, as the stimulation of DOC patients in research for behavioural response, in the morning.
To evaluate the effects of visual feedback training on motor recovery in postoperative patients with a total knee replacement (TKR). The performance of 40 first-ever TKR patients (27 females; mean age: 70.5 (67.2–74.0) years) was evaluated in a single center, single-blind, randomized controlled study. The patients were randomly and equally distributed into two demographically/clinically matched groups undergoing experimental or traditional treatments. All patients have been treated in a 1 h session, 2/day for 5 days a week, for six consecutive weeks. The first group (“control”) underwent conventional physical therapy, whereas the experimental group received advanced knee training with visual feedback using the TecnoBody® device (Walker View 3.0 SCX, Dalmine (BG), Italy). The clinical scales and kinematic parameters coming from the gait analysis were evaluated to demonstrate the dynamic balance function in a standing position before and after each treatment. After the treatment, both experimental and control groups improved significantly and similarly, as measured by the clinical scales (Numeric Rating Scale for Pain and Barthel index). A significant boosting of the motor performance was detected in the experimental group with respect to the control group in the terms of symmetry index 84 (80.8–85.4) vs. 87.15 (84–92.8) p = 0.001 *; single stance support 34.9 (34.1–36.5) vs. 37.8 (36.6–38.9); p < 0.001; and obliquity parameters 58.65 (51.3–70.3) vs. 73 (62.3–82.1); p < 0.001. Applying visual feedback training in addition to traditional rehabilitation strategies improves the knee function and motor control in postoperative TKR patients.
Background The principal conditions differentiating disorders of consciousness (DOC) patients are the unresponsive wakefulness syndrome/vegetative state (UWS/VS) and the minimally conscious state (MCS). Many individuals who suffer from sudden-onset severe brain injury move through stages of UWS/VS and MCS before regaining full awareness. In some patients, the DOC condition is protracted for years (PDOC). In this study, we observed PDOC patients for 6 months to assess possible changes in their level of consciousness. Methods We enrolled 40 PDOC patients, 23 UWS/VS and 17 MCS hosted in a dedicated unit for long-term brain injury care. The time from injury was 472 ± 533 days for UWS/VS and 1090 ± 1079 days for MCS. The Wessex Head Injury Matrix (WHIM), Coma Recovery Scale-R (CRS-R), and Nociception Coma Scale were administered monthly for 6 months. Results During the period of assessment, the percentage of UWS/VS shifted from 58 to 45%, while for the MCS, from 42 to 55%. A positive correlation was found for the UWS/VS patients between the months of observation with the CRS-R total score and WHIM total numbers of behaviors (TNB). In the UWS/VS group, the CRS-R auditive and visual subscales correlated positively with the observation time. During the whole period of observation, 8 patients had constant CRS-R total scores while the WHIM TNB changed in 7 of them. Conclusion Our findings demonstrated that the monthly assessment of PDOC by means of the CRS-R and WHIM was able to detect also subtle changes in consciousness level.
Neurofeedback is a non-invasive therapeutic approach that has gained traction in recent years, showing promising results for various neurological and psychiatric conditions. It involves real-time monitoring of brain activity, allowing individuals to gain control over their own brainwaves and improve cognitive performance or alleviate symptoms. The use of electroencephalography (EEG), such as brain–computer interface (BCI), transcranial direct current stimulation (tDCS), and transcranial magnetic stimulation (TMS), has been instrumental in developing neurofeedback techniques. However, the application of these tools in patients with disorders of consciousness (DoC) presents unique challenges. In this narrative review, we explore the use of neurofeedback in treating patients with DoC. More specifically, we discuss the advantages and challenges of using tools such as EEG neurofeedback, tDCS, TMS, and BCI for these conditions. Ultimately, we hope to provide the neuroscientific community with a comprehensive overview of neurofeedback and emphasize its potential therapeutic applications in severe cases of impaired consciousness levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.