The effect of Si-doping on the morphology, structure, and transport properties of nanowires was investigated. The nanowires were deposited by selective-area metal organic vapor phase epitaxy in an N 2 ambient. It is observed that doping systematically affects the nanowire morphology but not the structure of the nanowires. However, the transport properties of the wires are greatly affected. Room-temperature four-terminal measurements show that with an increasing dopant supply the conductivity monotonously increases. For the highest doping level the conductivity is higher by a factor of 25 compared to only intrinsically doped reference nanowires. By means of back-gate field-effect transistor measurements it was confirmed that the doping results in an increased carrier concentration. Temperature dependent resistance measurements reveal, for lower doping concentrations, a thermally activated semiconductor-type increase of the conductivity. In contrast, the nanowires with the highest doping concentration show a metal-type decrease of the resistivity with decreasing temperature.
We report on the technology and growth optimization of GaAs/InAs core/shell nanowires. The GaAs nanowire cores were grown selectively by metal organic vapor phase epitaxy (SA-MOVPE) on SiO(2) masked GaAs (111)B templates. These were structured by a complete thermal nanoimprint lithography process, which is presented in detail. The influence of the subsequent InAs shell growth temperature on the shell morphology and crystal structure was investigated by scanning and transmission electron microscopy in order to obtain the desired homogeneous and uniform InAs overgrowth. At the optimal growth temperature, the InAs shell adopted the morphology and crystal structure of the underlying GaAs core and was perfectly uniform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.