To elucidate the molecular mechanisms involved in the delayed induction of PGHS-2 in species with a long ovulatory process, a 1.6-kilobase fragment of the bovine PGHS-2 promoter was isolated, and its activity was characterized in primary cultures of bovine granulosa cells. Promoter activity assays performed with a series of deletion mutants revealed that the promoter region from ؊149 to ؊2 (؉1 ؍ transcription start site) confers full-length promoter activity in response to forskolin (10 M). Four consensus cis-elements were identified within this region, including an E-box, ATF/CRE, C/EBP, and AP2 site. Site-directed mutagenesis showed that the Ebox was required for PGHS-2 promoter activity, that disruption of the C/EBP element decreased forskolin inducible activity by 29%, whereas point mutation within the ATF/CRE and AP2 element had no inhibitory effect. Electrophoretic mobility shift assays (EMSAs) performed with the ؊149/؊2 fragment and granulosa cell nuclear extracts obtained before (0 h) and after (18 and 20 h) human chorionic gonadotropin (hCG) revealed the regulation of multiple DNA-protein complexes. The 0-h extract generated four complexes at the E-box, whereas only one complex was produced at this site with the 18-h extract. Supershift EMSAs identified that upstream stimulatory factor-1 and -2 (USF-1 and -2) were part of these complexes. Interestingly, the presence of the amino-terminal truncated USF-2, which lacks the transcription activation domain, was detected in the 0-h extract, but not in extracts prepared posthCG. Supershift EMSAs also indicated high levels of C/EBP binding to its cis-element in the 0-h extract, which contrasts with results previously reported in rats. Thus, high levels of amino-terminal truncated USF-2 and C/EBP in bovine granulosa cells prior to hCG treatment could repress gene expression, and be involved in the delayed induction of PGHS-2 in species with a long ovulatory process.
Prostaglandin G/H synthase (PGHS) is a key rate-limiting enzyme in the prostaglandin biosynthetic pathway, and prostaglandins play a central role in the control of the reproductive cycle. The objectives of this study were to clone and characterize the primary structure of bovine PGHS-2 and to study its regulation in uterine stromal cells in vitro. The bovine PGHS-2 cDNA was cloned by a combination of reverse transcription-polymerase chain reaction and cDNA library screening. Results showed that the complete bovine PGHS-2 cDNA is composed of a 5'-untranslated region of 128 bp, an open reading frame of 1815 bp, and a 3'-untranslated region of 1565 bp containing multiple repeats (n = 11) of the Shaw-Kamen sequence 5'-ATTTA-3'. The open reading frame encodes a 604-amino acid protein that is 86-97% identical to other mammalian PGHS-2 homologs. The regulation of PGHS-2 mRNA and protein was studied in primary cultures of bovine uterine stromal cells stimulated with phorbol 12-myristate 13-acetate (PMA; 100 nM). Northern and Western blot analyses reveal a marked induction in PGHS-2 transcript (4.0 kilobases) and protein (M(r) = 72 000) after 3-12 h of PMA stimulation (P < 0.05). However, this induction was transient in nature as levels of PGHS-2 mRNA and protein returned to basal levels after 24 h of PMA stimulation. In contrast, PMA had no effect on levels of PGHS-1 (P > 0.05). The PMA-dependent induction of PGHS-2 was associated with a significant increase in prostaglandin E2 secretion in the culture media (P < 0.05). To study promoter activity of the 5'-flanking DNA region of the bovine PGHS-2 gene, the genomic fragment -1574/-2 (+1 = transcription start site), as well as a series of 5'-deletion mutants, were fused upstream of the firefly luciferase gene and transiently transfected into primary cultures of bovine uterine stromal cells. Results showed that a first promoter region located between -1574 and -492 and a second region between -88 and -39 appear to play important roles in PMA-dependent regulation of PGHS-2 promoter activity in bovine uterine cells. Thus, this study characterizes for the first time the structure of the bovine PGHS-2 transcript and the deduced amino acid sequence of its encoded protein and establishes an in vitro model to study the regulation of PGHS-2 gene expression in bovine uterine tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.