Mutations in the RECQL4 gene can lead to three clinical phenotypes with overlapping features. All these syndromes, Rothmund-Thomson (RTS), RAPADILINO and Baller-Gerold (BGS), are characterized by growth retardation and radial defects, but RAPADILINO syndrome lacks the main dermal manifestation, poikiloderma that is a hallmark feature in both RTS and BGS. It has been previously shown that RTS patients with RECQL4 mutations are at increased risk of osteosarcoma, but the precise incidence of cancer in RAPADILINO and BGS has not been determined. Here, we report that RAPADILINO patients identified as carriers of the c.1390 þ 2delT mutation (p.Ala420_Ala463del) are at increased risk to develop lymphoma or osteosarcoma (6 out of 15 patients). We also summarize all the published RECQL4 mutations and their associated cancer cases and provide an update of 14 novel RECQL4 mutations with accompanying clinical data.
Several genes expressed at the centrosome or spindle pole have been reported to underlie autosomal recessive primary microcephaly (MCPH), a neurodevelopmental disorder consisting of an important brain size reduction present since birth, associated with mild-to-moderate mental handicap and no other neurological feature nor associated malformation. Here, we report a mutation of CASC5 (aka Blinkin, or KNL1, or hSPC105) in MCPH patients from three consanguineous families, in one of which we initially reported the MCPH4 locus. The combined logarithm of odds score of the three families was >6. All patients shared a very rare homozygous mutation of CASC5. The mutation induced skipping of exon 18 with subsequent frameshift and truncation of the predicted protein. CASC5 is part of the KMN network of the kinetochore and is required for proper microtubule attachment to the chromosome centromere and for spindle-assembly checkpoint (SAC) activation during mitosis. Like MCPH gene ASPM, CASC5 is upregulated in the ventricular zone (VZ) of the human fetal brain. CASC5 binds BUB1, BUBR1, ZWINT-1 and interestingly it binds to MIS12 through a protein domain which is truncated by the mutation. CASC5 localized at the equatorial plate like ZWINT-1 and BUBR1, while ASPM, CEP152 and PCTN localized at the spindle poles in our patients and in controls. Comparison of primate and rodent lineages indicates accelerated evolution of CASC5 in the human lineage. Our data provide strong evidence for CASC5 as a novel MCPH gene, and underscore the role of kinetochore integrity in proper volumetric development of the human brain.
Restrictive dermopathy (RD) is a rare and extremely severe congenital genodermatosis, characterized by a tight rigid skin with erosions at flexure sites, multiple joint contractures, low bone density and pulmonary insufficiency generally leading to death in the perinatal period. RD is caused in most patients by compound heterozygous or homozygous ZMPSTE24 null mutations. This gene encodes a metalloprotease specifically involved in lamin A post-translational processing. Here, we report a total of 16 families for whom diagnosis and molecular defects were clearly established. Among them, we report seven new ZMPSTE24 mutations, identified in classical RD or Mandibulo-acral dysplasia (MAD) affected patients. We also report nine families with one or two affected children carrying the common, homozygous thymine insertion in exon 9 and demonstrate the lack of a founder effect. In addition, we describe several new ZMPSTE24 variants identified in unaffected controls or in patients affected with non-classical progeroid syndromes. In addition, this mutation update includes a comprehensive search of the literature on previously described ZMPSTE24 mutations and associated phenotypes. Our comprehensive analysis of the molecular pathology supported the general rule: complete loss-of-function of ZMPSTE24 leads to RD, whereas other less severe phenotypes are associated with at least one haploinsufficient allele.
Subtelomeric rearrangements are believed to be responsible for 5-7% of idiopathic mental retardation cases. Due to the relative complexity and high cost of the screening methods used till now, only preselected patient populations including mostly the more severely affected cases have been screened. Recently, multiplex ligation-dependent probe amplification (MLPA) has been adapted for use in subtelomeric screening, and we have incorporated this technique into routine diagnostics of our laboratory. Since the evaluation of MLPA as a screening method, we tested 275 unselected patients with idiopathic mental retardation and detected 12 possible subtelomeric aberrations: a der(11)t(11;20)(qter;qter), a 19pter duplication, a der(18)t(18;10)(qter; pter), a 15qter deletion, a 8pter deletion, a 6qter deletion, a der(X)t(X;1)(pter;qter), a der(X)t(X;3)(pter;pter), a 5qter duplication, a 3pter deletion, and two 3qter duplications. The patients can be subdivided into two groups: the first containing de novo rearrangements that are likely related to the clinical presentation of the patient and the second including aberrations also present in one of the parents that may or may not be causative of the mental retardation. In our patient cohort, five (1.8%) subtelomeric rearrangements were de novo, three (1.1%) rearrangements were familial and suggestively disease causing, and four (1.5%) were possible polymorphisms. This high frequency of subtelomeric abnormalities detected in an unselected population warrants further investigation about the feasibility of routine screening for subtelomeric aberrations in mentally retarded patients.
The evolutionarily conserved transmembrane anterior posterior transformation 1 protein, encoded by TAPT1, is involved in murine axial skeletal patterning, but its cellular function remains unknown. Our study demonstrates that TAPT1 mutations underlie a complex congenital syndrome, showing clinical overlap between lethal skeletal dysplasias and ciliopathies. This syndrome is characterized by fetal lethality, severe hypomineralization of the entire skeleton and intra-uterine fractures, and multiple congenital developmental anomalies affecting the brain, lungs, and kidneys. We establish that wild-type TAPT1 localizes to the centrosome and/or ciliary basal body, whereas defective TAPT1 mislocalizes to the cytoplasm and disrupts Golgi morphology and trafficking and normal primary cilium formation. Knockdown of tapt1b in zebrafish induces severe craniofacial cartilage malformations and delayed ossification, which is shown to be associated with aberrant differentiation of cranial neural crest cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.