Metabolic inflammation in adipose tissue and the liver is frequently observed as a result of diet-induced obesity in human and rodent studies. Although the adipose tissue and the liver are both prone to become chronically inflamed with prolonged obesity, their individual contribution to the development of metabolic inflammation remains speculative. Thus, we aimed to elucidate the sequence of inflammatory events in adipose and hepatic tissues to determine their contribution to the development of metabolic inflammation and insulin resistance (IR) in diet-induced obesity. To confirm our hypothesis that adipose tissue (AT) inflammation is initiated prior to hepatic inflammation, C57BL/6J male mice were fed a low-fat diet (LFD; 10% kcal fat) or high-fat diet (HFD; 45% kcal fat) for either 24, 40 or 52 weeks. Lipid accumulation and inflammation was measured in AT and liver. Glucose tolerance was assessed and plasma levels of glucose, insulin, leptin and adiponectin were measured at various time points throughout the study. With HFD, C57BL/6j mice developed a progressive obese phenotype, accompanied by IR at 24 and 40 weeks of HFD, but IR was attenuated after 52 weeks of HFD. AT inflammation was present after 24 weeks of HFD, as indicated by the increased presence of crown-like structures and up-regulation of pro-inflammatory genes Tnf, Il1β, Mcp1 and F4/80. As hepatic inflammation was not detected until 40 weeks of HFD, we show that AT inflammation is established prior to the development of hepatic inflammation. Thus, AT inflammation is likely to have a greater contribution to the development of IR compared to hepatic inflammation.
Background:Non-alcoholic fatty liver disease (NAFLD) is strongly associated with abdominal obesity. Growing evidence suggests that inflammation in specific depots of white adipose tissue (WAT) has a key role in NAFLD progression, but experimental evidence for a causal role of WAT is lacking.Methods:A time-course study in C57BL/6J mice was performed to establish which WAT depot is most susceptible to develop inflammation during high-fat diet (HFD)-induced obesity. Crown-like structures (CLS) were quantified in epididymal (eWAT), mesenteric (mWAT) and inguinal/subcutaneous (iWAT) WAT. The contribution of inflamed WAT to NAFLD progression was investigated by surgical removal of a selected WAT depot and compared with sham surgery. Plasma markers were analyzed by enzyme-linked immunosorbent assay (cytokines/adipokines) and lipidomics (lipids).Results:In eWAT, CLS were formed already after 12 weeks of HFD, which coincided with maximal adipocyte size and fat depot mass, and preceded establishment of non-alcoholic steatohepatitis (NASH). By contrast, the number of CLS were low in mWAT and iWAT. Removal of inflamed eWAT after 12 weeks (eWATx group), followed by another 12 weeks of HFD feeding, resulted in significantly reduced NASH in eWATx. Inflammatory cell aggregates (−40% P<0.05) and inflammatory genes (e.g., TNFα, −37% P<0.05) were attenuated in livers of eWATx mice, whereas steatosis was not affected. Concomitantly, plasma concentrations of circulating proinflammatory mediators, viz. leptin and specific saturated and monounsaturated fatty acids, were also reduced in the eWATx group.Conclusions:Intervention in NAFLD progression by removal of inflamed eWAT attenuates the development of NASH and reduces plasma levels of specific inflammatory mediators (cytokines and lipids). These data support the hypothesis that eWAT is causally involved in the pathogenesis of NASH.
Concerns have been raised about whether preclinical models sufficiently mimic molecular disease processes observed in nonalcoholic steatohepatitis (NASH) patients, bringing into question their translational value in studies of therapeutic interventions in the process of NASH/fibrosis. We investigated the representation of molecular disease patterns characteristic for human NASH in high‐fat diet (HFD)‐fed Ldlr‐/‐.Leiden mice and studied the effects of obeticholic acid (OCA) on these disease profiles. Multiplatform serum metabolomic profiles and genome‐wide liver transcriptome from HFD‐fed Ldlr‐/‐.Leiden mice were compared with those of NASH patients. Mice were profiled at the stage of mild (24 weeks HFD) and severe (34 weeks HFD) fibrosis, and after OCA intervention (24‐34 weeks; 10 mg/kg/day). Effects of OCA were analyzed histologically, biochemically, by immunohistochemistry, using deuterated water technology (de novo collagen formation), and by its effect on the human‐based transcriptomics and metabolomics signatures. The transcriptomics and metabolomics profile of Ldlr‐/‐.Leiden mice largely reflected the molecular signature of NASH patients. OCA modulated the expression of these molecular profiles and quenched specific proinflammatory‐profibrotic pathways. OCA attenuated specific facets of cellular inflammation in liver (F4/80‐positive cells) and reduced crown‐like structures in adipose tissue. OCA reduced de novo collagen formation and attenuated further progression of liver fibrosis, but did not reduce fibrosis below the level before intervention. Conclusion: HFD‐fed Ldlr‐/‐.Leiden mice recapitulate molecular transcriptomic and metabolomic profiles of NASH patients, and these signatures are modulated by OCA. Intervention with OCA in developing fibrosis reduces collagen deposition and de novo synthesis but does not resolve already manifest fibrosis in the period studied. These data show that human molecular signatures can be used to evaluate the translational character of preclinical models for NASH.
Obesity is associated with a chronic low-grade inflammatory state that drives the development of obesity-related co-morbidities such as insulin resistance/type 2 diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease. This metabolic inflammation is thought to originate in the adipose tissue, which becomes inflamed and insulin resistant when it is no longer able to expand in response to excess caloric and nutrient intake. The production of inflammatory mediators by dysfunctional adipose tissue is thought to drive the development of more complex forms of disease such as type 2 diabetes and NAFLD. An important factor that may contribute to metabolic inflammation is the cytokine macrophage migration inhibitory factor (MIF). Increasing evidence suggests that MIF is released by adipose tissue in obesity and that it is also involved in metabolic and inflammatory processes that underlie the development of obesity-related pathologies. This review provides a comprehensive summary of our current knowledge on the role of MIF in obesity, its production by adipose tissue, and its involvement in the development of insulin resistance, type 2 diabetes, and NAFLD. We discuss the main findings from recent clinical studies in obese subjects and weight-loss intervention studies as well as results from clinical studies in patients with insulin resistance and type 2 diabetes. Furthermore, we summarize findings from experimental disease models studying the contribution of MIF in obesity and insulin resistance, type 2 diabetes, and hepatic lipid accumulation and fibrosis. Although many of the findings support a pro-inflammatory role of MIF in disease development, recent reports also provide indications that MIF may exert protective effects under certain conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.