Orexins are hypothalamic peptides that play an important role in maintaining wakefulness in mammals. Permanent deficit in orexinergic function is a pathophysiological hallmark of rodent, canine and human narcolepsy. Here we report that in rats, dogs and humans, somnolence is induced by pharmacological blockade of both orexin OX(1) and OX(2) receptors. When administered orally during the active period of the circadian cycle, a dual antagonist increased, in rats, electrophysiological indices of both non-REM and, particularly, REM sleep, in contrast to GABA(A) receptor modulators; in dogs, it caused somnolence and increased surrogate markers of REM sleep; and in humans, it caused subjective and objective electrophysiological signs of sleep. No signs of cataplexy were observed, in contrast to the rodent, dog or human narcolepsy syndromes. These results open new perspectives for investigating the role of endogenous orexins in sleep-wake regulation.
Macitentan, also called Actelion-1 or -6-(2-(5-bromopyrimidin-2-yloxy)ethoxy)-pyrimidin-4-yl]-NЈ-propylaminosulfonamide], is a new dual ET A / ET B endothelin (ET) receptor antagonist designed for tissue targeting. Selection of macitentan was based on inhibitory potency on both ET receptors and optimization of physicochemical properties to achieve high affinity for lipophilic milieu. In vivo, macitentan is metabolized into a major and pharmacologically active metabolite, ACT-132577. Macitentan and its metabolite antagonized the specific binding of ET-1 on membranes of cells overexpressing ET A and ET B receptors and blunted ET-1-induced calcium mobilization in various natural cell lines, with inhibitory constants within the nanomolar range. In functional assays, macitentan and ACT-132577 inhibited ET-1-induced contractions in isolated endothelium-denuded rat aorta (ET A receptors) and sarafotoxin S6c-induced contractions in isolated rat trachea (ET B receptors). In rats with pulmonary hypertension, macitentan prevented both the increase of pulmonary pressure and the right ventricle hypertrophy, and it markedly improved survival. In diabetic rats, chronic administration of macitentan decreased blood pressure and proteinuria and prevented end-organ damage (renal vascular hypertrophy and structural injury). In conclusion, macitentan, by its tissuetargeting properties and dual antagonism of ET receptors, protects against end-organ damage in diabetes and improves survival in pulmonary hypertensive rats. This profile makes macitentan a new agent to treat cardiovascular disorders associated with chronic tissue ET system activation.
Muscle injury (rhabdomyolysis) and subsequent deposition of myoglobin in the kidney causes renal vasoconstriction and renal failure. We tested the hypothesis that myoglobin induces oxidant injury to the kidney and the formation of F 2 -isoprostanes, potent renal vasoconstrictors formed during lipid peroxidation. In low density lipoprotein (LDL), myoglobin induced a 30-fold increase in the formation of F 2 -isoprostanes by a mechanism involving redox cycling between ferric and ferryl forms of myoglobin. In an animal model of rhabdomyolysis, urinary excretion of F 2 -isoprostanes increased by 7.3-fold compared with controls. Administration of alkali, a treatment for rhabdomyolysis, improved renal function and significantly reduced the urinary excretion of F 2 -isoprostanes by ϳ80%. EPR and UV spectroscopy demonstrated that myoglobin was deposited in the kidneys as the redox competent ferric myoglobin and that it's concentration was not decreased by alkalinization. Kinetic studies demonstrated that the reactivity of ferryl myoglobin, which is responsible for inducing lipid peroxidation, is markedly attenuated at alkaline pH. This was further supported by demonstrating that myoglobin-induced oxidation of LDL was inhibited at alkaline pH. These data strongly support a causative role for oxidative injury in the renal failure of rhabdomyolysis and suggest that the protective effect of alkalinization may be attributed to inhibition of myoglobin-induced lipid peroxidation.
Since its discovery, endothelin-1 has attracted considerable scientific interest because of its extremely potent and long-lasting vasoconstrictor effect and its binding to G-protein-coupled receptors. Plasma concentrations of endothelin-1 are low and its release by endothelial cells is polarized towards the basolateral side, suggesting that it is a paracrine factor and not a hormone. Consequently, the effect of injected endothelin-1 may not reflect the effect of endogenous endothelin-1. In contrast, blockade of the action of endogenous endothelin-1 using receptor antagonists should be a valuable means of investigating its physiological and pathological effects. We report here evidence for the pathophysiological role of endothelin-1 as brought by the first synthetic orally active nonpeptide antagonist of endothelin receptors, Ro 46-2005.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.