Tandem MS has identified 209 proteins of clathrin-coated vesicles (CCVs) isolated from rat brain. An overwhelming abundance of peptides were assigned to the clathrin coat with a 1:1 stoichiometry observed for clathrin heavy and light chains and a 2:1 stoichiometry of clathrin heavy chain with clathrin adaptor protein heterotetramers. Thirty-two proteins representing many of the known components of synaptic vesicles (SVs) were identified, supporting that a main function for brain CCVs is to recapture SVs after exocytosis. A ratio of vesicle-N-ethylmaleimide-sensitive factor attachment protein receptors to target-N-ethylmaleimide-sensitive factor attachment protein receptors, similar to that previously detected on SVs, supports a single-step model for SV sorting during CCV-mediated recycling of SVs. The uncovering of eight previously undescribed proteins, four of which have to date been linked to clathrin-mediated trafficking, further attests to the value of the current organelle-based proteomics strategy. T he sorting of receptors and other cell-surface proteins from the plasma membrane via clathrin-mediated endocytosis is the basis for a range of essential cellular processes, including the uptake of nutrient and signaling receptors, the control of cell and serum homeostasis through the internalization of plasma membrane pumps, and a contribution to learning and memory through the regulation of surface expression of neurotransmitter receptors (1). Until recently, it was thought that clathrin assembly into progressively curved lattices provided the driving force for the formation of clathrin-coated pits (CCPs) and vesicles (CCVs), and that the adaptor protein 2 (AP-2) complex was solely responsible for recruiting clathrin to the membrane and for binding to endocytic cargo, concentrating the cargo in CCPs (1, 2). However, clathrin assembly may not be sufficient to drive membrane curvature (3), and the previously accepted obligatory role for AP-2 in coat assembly and cargo recruitment has been recently questioned (4-6).In neuronal tissues, CCVs are postulated to be responsible for the recycling of synaptic vesicles (SVs) during neurotransmission (7). As such, CCVs retrieve SV membranes from the plasma membrane after SV collapse, concomitant with neurotransmitter release. Many of the components of the endocytic machinery are concentrated in the presynaptic compartment (8), and disruption of these proteins affects neurotransmission (9). Moreover, a number of SV proteins have been identified as components of isolated CCVs (10, 11). Synaptic transmission involving intermittent fusion of SVs without complete collapse (12, 13) has also been demonstrated. The prevalence of such a ''kiss-and-run'' mechanism with the alternative model of full fusion is uncertain (14). Even in the membrane retrieval model via CCVs, it remains unclear whether SVs are generated directly from CCVs (15, 16) or whether they require an additional sorting step through endosomal membranes localized in the presynaptic compartment (7, 17). Here, using ...
A Saskatchewan multi-incident family was clinically characterized with Parkinson disease (PD) and Lewy body pathology. PD segregates as an autosomal-dominant trait, which could not be ascribed to any known mutation. DNA from three affected members was subjected to exome sequencing. Genome alignment, variant annotation and comparative analyses were used to identify shared coding mutations. Sanger sequencing was performed within the extended family and ethnically matched controls. Subsequent genotyping was performed in a multi-ethnic case–control series consisting of 2928 patients and 2676 control subjects from Canada, Norway, Taiwan, Tunisia, and the USA. A novel mutation in receptor-mediated endocytosis 8/RME-8 (DNAJC13 p.Asn855Ser) was found to segregate with disease. Screening of cases and controls identified four additional patients with the mutation, of which two had familial parkinsonism. All carriers shared an ancestral DNAJC13 p.Asn855Ser haplotype and claimed Dutch–German–Russian Mennonite heritage. DNAJC13 regulates the dynamics of clathrin coats on early endosomes. Cellular analysis shows that the mutation confers a toxic gain-of-function and impairs endosomal transport. DNAJC13 immunoreactivity was also noted within Lewy body inclusions. In late-onset disease which is most reminiscent of idiopathic PD subtle deficits in endosomal receptor-sorting/recycling are highlighted by the discovery of pathogenic mutations VPS35, LRRK2 and now DNAJC13. With this latest discovery, and from a neuronal perspective, a temporal and functional ecology is emerging that connects synaptic exo- and endocytosis, vesicular trafficking, endosomal recycling and the endo-lysosomal degradative pathway. Molecular deficits in these processes are genetically linked to the phenotypic spectrum of parkinsonism associated with Lewy body pathology.
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a childhood-onset neurological disease resulting from mutations in the SACS gene encoding sacsin, a 4,579-aa protein of unknown function. Originally identified as a founder disease in Québec, ARSACS is now recognized worldwide. Prominent features include pyramidal spasticity and cerebellar ataxia, but the underlying pathology and pathophysiological mechanisms are unknown. We have generated an animal model for ARSACS, sacsin knockout mice, that display agedependent neurodegeneration of cerebellar Purkinje cells. To explore the pathophysiological basis for this observation, we examined the cell biological properties of sacsin. We show that sacsin localizes to mitochondria in non-neuronal cells and primary neurons and that it interacts with dynamin-related protein 1, which participates in mitochondrial fission. Fibroblasts from ARSACS patients show a hyperfused mitochondrial network, consistent with defects in mitochondrial fission. Sacsin knockdown leads to an overly interconnected and functionally impaired mitochondrial network, and mitochondria accumulate in the soma and proximal dendrites of sacsin knockdown neurons. Disruption of mitochondrial transport into dendrites has been shown to lead to abnormal dendritic morphology, and we observe striking alterations in the organization of dendritic fields in the cerebellum of knockout mice that precedes Purkinje cell death. Our data identifies mitochondrial dysfunction/mislocalization as the likely cellular basis for ARSACS and indicates a role for sacsin in regulation of mitochondrial dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.