Variables, such as peak and accumulated moments and spine compression forces, have been shown to be risk factors for occupational low back pain. Estimates of these forces during prolonged, dynamic, asymmetric tasks using biomechanical models is complex and time-consuming. A simple technique for continuous measurement of these variables over a prolonged period is needed to measure the distribution of spinal loading during both sagittal plane lifts and complex asymmetrical jobs. The aim of this study was to determine whether a linear normalization of erector spinae EMG to spine compression force, called compression normalized EMG (CNEMG), could be used to estimate spinal loading for simulations of asymmetrical occupational tasks. The estimates of spine compression force obtained using the normalized EMG are presented in the form of an amplitude probability distribution function and are compared with estimates of a three-dimensional biomechanical model. The per cent time a worker spends above particular levels of spinal loading of interest, such as the NIOSH action limit for compression, are displayed. Five males performed simulated occupational tasks. The exposure time at a specific level of spine compression force for a combination of three tasks, estimated by CNEMG, was, on average, within 6.5% of the time calculated by the biomechanical model. However, if the task combination was dominated by an axial twisting moment, then the difference was, on average, 13.4%. The difference in magnitude of spine compression at a specific probability was, on average, 14.9% and when axial trunk twist dominated, 30.7%. It is concluded that CNEMG can estimate probability at a specific level of spine compression force when the task combination is characterized by a predominant extensor moment in the sagittal plane. Estimates of spine compression at a specific probability, and estimates obtained during task combinations dominated by an axial twisting moment, are poor.
In this study, changes in movement coordination caused by fatigue that developed during repetitive lifting were examined. Five men performed 6 times a 5-min bout of lifting an 8-kg barbell at 15 lifts/min, using two lifting techniques; one minimized trunk rotation (squat lift), and the other minimized rotation in the knee joint (stoop lift). Kinematics and dynamics were studied by means of movement analysis and inverse dynamics, using a two-dimensional linked segment model. Within-subject variation over repetitive lifts of the time course of joint angles was smaller than between-subjects variation on the first analyzed lift. Relative timing between joint rotations did not change significantly across repetitive lifts, except between knee and hip in the squat lift. No change of the lumbosacral torque over repetitive lifts was found. The adaptability of the neural control appeared to be sufficient to accommodate the strong changes of the input-output characteristics of the muscles caused by fatigue so that an essentially constant performance of the movement act was maintained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.