Many mitochondrial proteins are synthesized as precursors in the cytosol with an N-terminal mitochondrial targeting sequence (MTS) which is cleaved off upon import. Although much is known about import mechanisms and MTS structural features, the variability of MTS still hampers robust sub-cellular software predictions. Here, we took advantage of two paralogous late embryogenesis abundant proteins (LEA) from Arabidopsis with different subcellular locations to investigate structural determinants of mitochondrial import and gain insight into the evolution of the LEA genes. LEA38 and LEA2 are short proteins of the LEA_3 family, which are very similar along their whole sequence, but LEA38 is targeted to mitochondria while LEA2 is cytosolic. Differences in the N-terminal protein sequences were used to generate a series of mutated LEA2 which were expressed as GFP-fusion proteins in leaf protoplasts. By combining three types of mutation (substitution, charge inversion, and segment replacement), we were able to redirect the mutated LEA2 to mitochondria. Analysis of the effect of the mutations and determination of the LEA38 MTS cleavage site highlighted important structural features within and beyond the MTS. Overall, these results provide an explanation for the likely loss of mitochondrial location after duplication of the ancestral gene.
LEAM, a late embryogenesis abundant protein, and HSP22, a small heat shock protein, were shown to accumulate in the mitochondria during pea (Pisum sativum L.) seed development, where they are expected to contribute to desiccation tolerance. Here, their expression was examined in seeds of 89 pea genotypes by Western blot analysis. All genotypes expressed LEAM and HSP22 in similar amounts. In contrast with HSP22, LEAM displayed different isoforms according to apparent molecular mass. Each of the 89 genotypes harboured a single LEAM isoform. Genomic and RT-PCR analysis revealed four LEAM genes differing by a small variable indel in the coding region. These variations were consistent with the apparent molecular mass of each isoform. Indels, which occurred in repeated domains, did not alter the main properties of LEAM. Structural modelling indicated that the class A α-helix structure, which allows interactions with the mitochondrial inner membrane in the dry state, was preserved in all isoforms, suggesting functionality is maintained. The overall results point out the essential character of LEAM and HSP22 in pea seeds. LEAM variability is discussed in terms of pea breeding history as well as LEA gene evolution mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.