After dredged sediments have settled in a temporary upland disposal site, ripening starts, which turns waterlogged sediment into aerated soil. Aerobic biological mineralization of organic matter (OM) and chemical oxidation of reduced sulfur compounds are the major biochemical ripening processes. Quantitative data describing these processes are scarce. Therefore, aerobic oxidation and mineralization of five previously anaerobic dredged sediments were studied during a 160-d laboratory incubation experiment at 30 degrees C. A double exponential decay model could adequately describe sulfur oxidation and OM mineralization kinetics. During the first 7 d of incubation, 23 to 80% of the total sulfur was oxidized, after which no further sulfur oxidation was observed. Oxygen used for sulfur oxidation amounted up to 95% of the total oxygen uptake in the first 7 d and up to 45% of the oxygen uptake during the entire incubation period. Mineralization rates of the rapidly mineralizable OM fractions that degraded during the first 14 to 28 d of incubation were 10(2) to 10(3) times higher than the mineralization rates of the slowly mineralizable OM during the remaining period. First-order mineralization rates of the slowly mineralizable OM were 0.22 x 10(-3) to 0.54 x 10(-3) d(-1) and can be compared with those of terrestrial soils. Yields of biomass on substrate ranged from 0.08 to 0.45 g C(biomass)/g C(OM) and appeared to be higher for rapidly mineralizing OM than for slowly mineralizing OM. The results of this study can be used to optimize conditions during temporary disposal of sediments, to estimate the potential decrease in OM, and for future studies on the possible link between OM mineralization and degradation of hydrophobic organic contaminants.
Ripening of polycyclic aromatic hydrocarbons (PAH) and total petroleum hydrocarbons (TPH) polluted dredged sediment can be considered as a bioremediation technique. Aerobic biodegradation of PAH and TPH was studied in five previously anaerobic-slurried sediments during a 350-d laboratory incubation experiment. In addition, oxygen penetration and degradation of PAH and TPH were studied in three consolidated (physically ripened) sediments. All experiments were conducted in the laboratory at 30 degrees C. A double exponential decay model could adequately describe PAH and TPH degradation kinetics in the slurried sediments. First-order degradation rate constants for the rapidly degradable fractions (12-58%) were approximately 0.13 and 0.058 d(-1) for PAH and TPH, respectively, whereas the rate constants for the slowly degradable fractions were approximately 0.36 x 10(-3) (PAH) and 0.66 x 10(-3) d(-1) (TPH). Rate constants for the rapidly and slowly degrading fractions have the same order of magnitude as the mineralization rate constants of the rapidly and slowly mineralizing organic matter (OM) fractions in the sediments. Oxygen uptake by degradation of PAH and TPH was negligible compared to the oxygen uptake by sulfur oxidation and OM mineralization. In consolidated sediments, PAH and TPH degradation was limited to the oxygenated part. Amounts of PAH and TPH that degraded in the oxygenated parts of the consolidated sediments during 21 d of incubation were similar to the amounts that degraded during 21 d in the slurried sediments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.