In a sensorimotor synchronization task requiring subjects to tap in synchrony with an auditory stimulus, occasional perturbations (i.e., interval changes) in an otherwise isochronous sequence of auditory metronome stimuli are known to be compensated remarkably swift and with surprising precision, even when they are too small to be consciously perceived. To investigate the neural substrate and the informational basis of error correction in sensorimotor synchronization, we recorded movement-related, auditory-evoked, and error-related EEG potentials. Experiment 1 confirmed rapid adjustment to stimulus phase shifts, with faster correction of large (50 ms) compared to small (15 ms) shifts. In addition to being corrected faster, there was overcorrection of the 50 ms shifts, attributed to engagement of period correction mechanisms. For ϩ50 ms shifts, a neural correlate of period correction was identified in the form of medial frontal cortex activation, preceded by an error-related brain potential (ERN). Auditory-evoked potential (AEP) amplitudes were sensitive to stimulus phase shifts of both large and small magnitude. Further experiments with a smaller magnitude 10 ms phase shift (Experiment 2) and passive auditory stimulation (Experiment 3) provided evidence that the modulation of AEP amplitudes is not due to metronome interval changes, but may represent auditory-somatosensory activation. Together, behavioral and neurophysiological data support the hypothesis that phase correction is a largely automatic process, not dependent on conscious perception of changes in timing. By contrast, perceivable phase shifts may invoke timekeeper adjustments accompanied by medial frontal cortex activity.
This review outlines the basic psychological and neurobiological processes associated with age-related distortions in timing and time perception in the hundredths of milliseconds-to-minutes range. The difficulty in separating indirect effects of impairments in attention and memory from direct effects on timing mechanisms is addressed. The main premise is that normal aging is commonly associated with increased noise and temporal uncertainty as a result of impairments in attention and memory as well as the possible reduction in the accuracy and precision of a central timing mechanism supported by dopamine-glutamate interactions in cortico-striatal circuits. Pertinent to these findings, potential interventions that may reduce the likelihood of observing age-related declines in timing are discussed. Bayesian optimization models are able to account for the adaptive changes observed in time perception by assuming that older adults are more likely to base their temporal judgments on statistical inferences derived from multiple trials than on a single trial’s clock reading, which is more susceptible to distortion. We propose that the timing functions assigned to the age-sensitive fronto-striatal network can be subserved by other neural networks typically associated with finely-tuned perceptuo-motor adjustments, through degeneracy principles (different structures serving a common function).
We demonstrate that observation of everyday rhythmical actions biases subsequent motor execution of the same and of different actions, using a paradigm where the observed actions were irrelevant for action execution. The cycle time of the distractor actions was subtly manipulated across trials, and the cycle time of motor responses served as the main dependent measure. Although distractor frequencies reliably biased response cycle times, this imitation bias was only a small fraction of the modulations in distractor speed, as well as of the modulations produced when participants intentionally imitated the observed rhythms. Importantly, this bias was not only present for compatible actions, but was also found, though numerically reduced, when distractor and executed actions were different (e.g., tooth brushing vs. window wiping), or when the dominant plane of movement was different (horizontal vs. vertical). In addition, these effects were equally pronounced for execution at 0, 4, and 8 s after action observation, a finding that contrasts with the more short-lived effects reported in earlier studies. The imitation bias was also unaffected when vision of the hand was occluded during execution, indicating that this effect most likely resulted from visuomotor interactions during distractor observation, rather than from visual monitoring and guidance during execution. Finally, when the distractor was incompatible in both dimensions (action type and plane) the imitation bias was not reduced further, in an additive way, relative to the single-incompatible conditions. This points to a mechanism whereby the observed action’s impact on motor processing is generally reduced whenever this is not useful for motor planning. We interpret these findings in the framework of biased competition, where intended and distractor actions can be represented as competing and quasi-encapsulated sensorimotor streams.
An age-related difference in accuracy and variability of unpaced timing tasks suggests that the internal clock for the processing of intervals of hundreds of milliseconds slows down with age. However, we recently found that sensorimotor synchronization (SMS) error detection and correction abilities are preserved into the ninth and tenth decades, although fastest tapping rate decreases (Turgeon, Wing, & Taylor, 2011). Further testing with the same sample of participants in the present study provides evidence for slowing of the internal clock with age. We report an age-related decrease in spontaneous motor tempo (SMT), an age-related increase in produced period when estimating target durations of 500 ms and 1000 ms, and an age-related increase in "clock variance" in continuing tapping intervals ranging from 300 ms to 900 ms. The profile of age-related difference across the 2 studies suggests a late onset, starting in the ninth decade, of clock slowing without age-related difference in timing error monitoring. The finding that unpaced timing is affected by age, whereas paced timing involved in SMS is not, suggests separate underlying mechanisms for internally generated intervals and monitoring of external timing errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.