Learning analytics (LA) has emerged as a field that offers promising new ways to support failing or weaker students, prevent drop-out and aid retention. However, other research suggests that large datasets of learner activity can be used to understand online learning behaviour and improve pedagogy. While the use of LA in language learning has received little attention to date, available research suggests that understanding language learner behaviour could provide valuable insights into task design for instructors and materials designers, as well as help students with effective learning strategies and personalised learning pathways. This paper first discusses previous research in the field of language learning and teaching based on learner tracking and the specific affordances of LA for CALL, as well as its inherent limitations and challenges. The second part of the paper analyses data arising from the European Commission (EC) funded VITAL project that adopted a bottom-up pedagogical approach to LA and implemented learner activity tracking in different blended or distance learning settings.Referring to data arising from 285 undergraduate students on a Business French course at Hasselt University which used a flipped classroom design, statistical and process-mining techniques were applied to map and visualise actual uses of online learning resources over the course of one semester.Results suggested that most students planned their self-study sessions in accordance with the flipped classroom design, both in terms of their timing of online activity and selection of contents. Other metrics measuring active online engagement -a crucial component of
Linguaplan Limburg, recherche comparative internationale, a d’abord dressé l’inventaire des problèmes d’ordre linguistique de 1 000 PME-PMI. Cette première partie quantitative fut suivie par une phase axée sur une analyse qualitative à double objectif : l’établissement de profils langagiers détaillés de certains métiers-professions résultant du susdit inventaire d’une part, la constitution et l’analyse de corpus écrits et oraux d’autre part. Cette exploration qualitative a constitué la base de la troisième phase, celle de la conception et de l’élaboration de modules langagiers d’apprentissage ciblés et multimédias, de la taille la plus opérationnelle possible, et se prêtant à l’auto-apprentissage.
Les professionnels sont confrontés de plus en plus à des besoins langagiers. Mais surtout dans le monde très vaste et très varié des P. M. E.-P. M. I., on ne dispose que de très peu de temps et souvent de budgets réduits. Qui plus est, on exige une garantie de rendement ! Une panacée ? La meilleure connaissance possible des quatre composantes de l’apprentissage : 1) Un diagnostic linguistique détaillé de l’apprenant. 2) L’inventaire le plus précis possible de ses besoins langagiers (= objectifs de l’apprentissage). 3) Une excellente connaissance de son profil d’apprentissage. 4) Une sélection sévère des unités à apprendre. A partir de tous ces savoirs, des modules multimédias d’auto-apprentissage sont possibles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.