An unresolved issue in RAF kinase signaling is how binding of autoinhibited RAF monomers to activated RAS initiates the conformational changes required to form active RAF dimers. Here, we present cryo-electron microscopy structures of full-length BRAF complexes derived from mammalian cells: autoinhibited monomeric BRAF:14-3-32:MEK and BRAF:14-3-32 complexes and an inhibitor-bound, dimeric BRAF2:14-3-32 complex, at 3.7, 4.1, and 3.9 Å resolution, respectively. The RAS binding domain (RBD) of BRAF is resolved in the autoinhibited structures, and we find that neither MEK nor ATP binding is required to stabilize the autoinhibited complexes. Notably, the RBD was found to interact extensively with the 14-3-3 protomer bound to the BRAF C-terminal site. Moreover, through structure-guided mutational studies, our findings indicate that RAS-RAF binding is a dynamic process and that RBD residues at the 14-3-3 interface have a dual function, first stabilizing RBD orientation in the autoinhibited state and then contributing to full RAS contact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.