In modern day industry, robots are indispensable for achieving high production rates and competitiveness. In small and medium scale enterprises, where the production may shift rapidly, it is vital to be able to reprogram robots quickly. Kinesthetic teaching, also known as lead-through programming (LTP), provides a fast approach for teaching a trajectory. In this approach, a trajectory is demonstrated by physical interaction with the robot, i.e., the user manually guides the manipulator. This paper presents a sensorless approach to LTP for redundant robots that eliminates the need for expensive force/torque sensors. The active implementation enhances the passive LTP by an admittance control in joint space based on the external forces applied by the user, estimated with a Kalman filter using the generalized momentum formulation. To improve the quality of the estimation and hence LTP, we use a dithering technique. The active LTP has been implemented on ABB YuMi robot and experimental comparison with an earlier passive LTP is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.