We have combined ultrasensitive magnetic resonance force microscopy (MRFM) with 3D image reconstruction to achieve magnetic resonance imaging (MRI) with resolution <10 nm. The image reconstruction converts measured magnetic force data into a 3D map of nuclear spin density, taking advantage of the unique characteristics of the "resonant slice" that is projected outward from a nanoscale magnetic tip. The basic principles are demonstrated by imaging the 1 H spin density within individual tobacco mosaic virus particles sitting on a nanometer-thick layer of adsorbed hydrocarbons. This result, which represents a 100 millionfold improvement in volume resolution over conventional MRI, demonstrates the potential of MRFM as a tool for 3D, elementally selective imaging on the nanometer scale.MRFM ͉ MRI ͉ nuclear magnetic resonance ͉ molecular structure imaging M agnetic resonance imaging (MRI) is well-known in medicine and in the neurosciences as a powerful tool for acquiring 3D morphological and functional information with resolution in the millimeter-to-submillimeter range (1, 2). Unfortunately, despite considerable effort, attempts to push the spatial resolution of conventional MRI into the realm of highresolution microscopy have been stymied by fundamental limitations, especially detection sensitivity (3, 4). Consequently, the highest resolution MRI microscopes today remain limited to voxel volumes Ͼ40 m 3 (5-8). The central issue is that MRI is based on the manipulation and detection of nuclear magnetism, and nuclear magnetism is a relatively weak physical effect. It appears that conventional coil-based inductive detection techniques simply cannot provide adequate signal-to-noise ratio for detecting voxel volumes below the micrometer size. This sensitivity constraint is unfortunate because MRI has much to offer the world of microscopy with its unique contrast modalities, its elemental selectivity, and its avoidance of radiation damage.Despite the many challenges, there is strong motivation to extend MRI to finer resolution, especially if the nanometer scale can be reached. At the nanometer scale, one might hope to directly and nondestructively image the 3D structure of individual macromolecules and molecular complexes (9). Such a powerful molecular imaging capability could be of particular interest to structural biologists trying to unravel the structure and interactions of proteins, especially for those proteins that cannot be crystallized for X-ray analysis, or are too large for conventional NMR spectroscopy. Nanoscale MRI, with its capacity for true 3D, subsurface imaging, its potential for generating contrast by selective isotopic labeling and its nondestructive nature, would be a welcome complement to the characteristics of electron microscopy. The key to pushing MRI to the nanoscale is detection sensitivity.Recently, a significant breakthrough in magnetic resonance detection sensitivity has been achieved by using magnetic resonance force microscopy (MRFM) (9-13), resulting in single spin detection for electrons ...
Solid-state systems which mimic two-level atoms are being actively developed. Improving the quantum coherence of these systems, for instance spin qubits or single photon emitters using semiconductor quantum dots, involves dealing with noise. The sources of noise are inherent to the semiconductor and are complex. Charge noise results in a fluctuating electric field, spin noise in a fluctuating magnetic field at the location of the qubit, and both can lead to dephasing and decoherence of optical and spin states. We investigate noise in an ultra-pure semiconductor using a minimally-invasive, ultra-sensitive, local probe: resonance fluorescence from a single quantum dot. We distinguish between charge noise and spin noise via a crucial difference in their optical signatures. Noise spectra for both electric and magnetic fields are derived. The noise spectrum of the charge noise can be fully described by the fluctuations in an ensemble of localized charge defects in the semiconductor. We demonstrate the "semiconductor vacuum" for the optical transition at frequencies above 50 kHz: by operating the device at high enough frequencies, we demonstrate transform-limited quantum dot optical linewidths
We cool the fundamental mechanical mode of an ultrasoft silicon cantilever from a base temperature of 2.2 K down to 2.9+/-0.3 mK using active optomechanical feedback. The lowest observed mode temperature is consistent with limits determined by the properties of the cantilever and by the measurement noise. For high feedback gain, the driven cantilever motion is found to suppress or "squash" the optical interferometer intensity noise below the shot noise level.
Magnetic resonance imaging, based on the manipulation and detection of nuclear spins, is a powerful imaging technique that typically operates on the scale of millimeters to microns. Using magnetic resonance force microscopy, we have demonstrated that magnetic resonance imaging of nuclear spins can be extended to a spatial resolution better than 100 nm. The two-dimensional imaging of 19 F nuclei was done on a patterned CaF 2 test object, and was enabled by a detection sensitivity of roughly 1200 nuclear spins. To achieve this sensitivity, we developed high-moment magnetic tips that produced field gradients up to 1.4×10 6 T/m, and implemented a measurement protocol based on force-gradient detection of naturally occurring spin fluctuations. The resulting detection volume of less than 650 zl represents 60,000× smaller volume than previous NMR microscopy and demonstrates the feasibility of pushing magnetic resonance imaging into the nanoscale regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.