This paper presents a comparative analysis of the widely accepted YOLOv5 and the latest version of YOLO which is YOLOv7. Experiments were carried out by training a custom model with both YOLOv5 and YOLOv7 independently in order to consider which one of the two performs better in terms of precision, recall, mAP@0.5 and mAP@0.5:0.95. The dataset used in the experiment is a custom dataset for Remote Weapon Station which consists of 9,779 images containing 21,561 annotations of four classes gotten from Google Open Images Dataset, Roboflow Public Dataset and locally sourced dataset. The four classes are Persons, Handguns, Rifles and Knives. The experimental results of YOLOv7 were precision score of 52.8%, recall value of 56.4%, mAP@0.5 of 51.5% and mAP@0.5:0.95 of 31.5% while that of YOLOv5 were precision score of 62.6%, recall value of 53.4%, mAP@0.5 of 55.3% and mAP@0.5:0.95 of 34.2%. It was observed from the experiment conducted that YOLOv5 gave a better result than YOLOv7 in terms of precision, mAP@0.5 and mAP@0.5:0.95 overall while YOLOv7 has a higher recall value during testing than YOLOv5. YOLOv5 records 4.0% increase in accuracy compared to YOLOv7.
Gender recognition has been seen as an interesting research area that plays important roles in many fields of study. Studies from MIT and Microsoft clearly showed that the female gender was poorly recognized especially among dark-skinned nationals. The focus of this paper is to present a technique that categorise gender among dark-skinned people. The classification was done using SVM on sets of images gathered locally and publicly. Analysis includes; face detection using Viola-Jones algorithm, extraction of Histogram of Oriented Gradient and Rotation Invariant LBP (RILBP) features and trained with SVM classifier. PCA was performed on both the HOG and RILBP descriptors to extract high dimensional features. Various success rates were recorded, however, PCA on RILBP performed best with an accuracy of 99.6% and 99.8% respectively on the public and local datasets. This system will be of immense benefit in application areas like social interaction and targeted advertisement.
Game-theoretic resource allocation algorithms are essential to managing the interference that Device-to-Device (D2D) and cellular transmissions could generate to each other in cellular networks since game-theoretic solutions are naturally autonomous and robust. In this paper, we present a survey on D2D communication in cellular networks with respect to the performance of the existing and accessible game-theoretic resource allocation algorithms published in 2013-2019. Each of the game-theoretic resource allocation algorithms with its properties such as utility, complexity, fairness, overhead cost, and convergence rate are reviewed and compared. The survey proved that gametheoretic solutions could be a viable strategy for practical implementation in 5G networks as each of the reviewed scheme attempts to optimize one or various essential performance metrics in the system. Finally, the paper recommends that serious efforts should be made by standardization bodies in incorporating game-theoretic strategy in D2D-enabled 5G networks while considering it as a road map for reliable and resource-efficient solutions in future cellular networks.
Several higher institution of learning faces issue or difficulty of turning out more than 90% of their graduates who can competently satisfy and meet the requirements of the industry. However, the industry is also confronted with the difficulty of sourcing skilled tertiary institution graduates that match their needs. Failure or success of any organization depends mostly on how its workforce is recruited and retained. Therefore, the selection of an acceptable or satisfactory candidate for the job position is one of the major and vital problems of management decision-making. This work, therefore, proposes a modern, accurate and worthy machine learning classification model that can be deployed, implemented, and put to use when making predictions and assessments on job applicant's attributes from their academic performance datasets in other to meet the selection criteria for the industry. Both supervised and unsupervised machine learning classifiers were considered in this work. Naïve Bayes, Logistic Regression, support vector machine (SVM). Random Forest and Decision tree performed well, but Logistic Regression outperformed others with 93% accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.