The isothermal crystallization process of a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer, P(HB-co-HV) with a HB/HV ratio 78/22 was investigated by simultaneous small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS), and dielectric spectroscopy (DS). By use of this experimental setup (SWD), we have obtained simultaneous information about changes occurring in both the crystalline and the amorphous phases during crystallization. By using the Havriliak-Negami formalism to analyze the dielectric relaxation data, a strong dependence of the relaxation curve shape with the development of the crystalline phase was found. However, in this particular copolymer, the developing crystalline domains do not affect significantly the average segmental mobility in the amorphous phase. This effect is discussed in the light of the enrichment of amorphous phase by HV comonomer units during primary crystallization, hindering the secondary crystallization processes. Results support the hypothesis that the decrease of the physical-aging-like behavior, observed in P(HB-co-HV) copolymers as the amount of HV increases, can be attributed to the progressive inhibition of secondary crystallization mechanisms.
This article reports on the influence of the paraffin (PAR) on the wood fiber (WF) dispersion in different polyethylene (low-density polyethylene, high-density polyethylene, recycled polyethylene) matrices, as well as on the melt flow behavior and mechanical properties of WFreinforced polyethylene (PE) composites. In the presence of paraffin, the composites showed improved tensile and flexural strength and modulus, but lower impact strength and elongation at break. The extent of improvement in mechanical properties depends on paraffin content and type of polyethylene; the most effective paraffin was in LDPE-based composites. Paraffin-treated WF showed lower moisture absorption ability in comparison with unmodified wood fiber. The phase segregation process was investigated for PE/PAR blends by DSC method. It was shown that an increase of paraffin concentration in the PE/PAR blend leads to a decrease of PE melting temperature and an increase of paraffin melting temperature; it indicates a net exchange of material from paraffin towards polyethylene. However, generally both components of PE/PAR blends remain immiscible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.