In this work, the interface between 4H-SiC and thermally grown SiO2 is studied using low energy muon spin rotation (LE-μSR) spectroscopy. Samples oxidized at 1300 °C were annealed in NO or Ar ambience and the effect of the ambience and the annealing temperature on the near interface region is studied in a depth resolved manner. NO-annealing is expected to passivate the defects, resulting in reduction of interface traps, which is confirmed by electrical characterization. Introduction of N during annealing, to the SiC matrix, results in a thin, carrier rich region close to the interface leading to an increase in the diamagnetic asymmetry. Annealing in an inert environment (Ar) seems to have much lesser impact on the electrical signal, however the μSR shows a reduced paramagnetic asymmetry, indicating a narrow region of low mobility at the interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.