The growing use of information and communication technologies (ICT) in power grid operational environments has been essential for operators to improve the monitoring, maintenance and control of power generation, transmission and distribution, however, at the expense of an increased grid exposure to cyber threats. This paper considers cyberattack scenarios targeting substation protective relays that can form the most critical ingredient for the protection of power systems against abnormal conditions. Disrupting the relays operations may yield major consequences on the overall power grid performance possibly leading to widespread blackouts. We investigate methods for the enhancement of substation cybersecurity by leveraging the potential of machine learning for the detection of transformer differential protective relays anomalous behavior. The proposed method analyses operational technology (OT) data obtained from the substation current transformers (CTs) in order to detect cyberattacks. Power systems simulation using OPAL-RT HYPERSIM is used to generate training data sets, to simulate the cyberattacks and to assess the cybersecurity enhancement capability of the proposed machine learning algorithms.
Electric power substations are experiencing an accelerated pace of digital transformation including the deployment of LAN-based IEC 61850 communication protocols that facilitate accessibility to substation data while also increasing remote access points and exposure to complex cyberattacks. In this environment, machine learning algorithms will play a vital role in cyberattack detection and mitigation and natural questions arise as to the most effective models in the context of smart grid substations. This paper compares the performance of three autoencoder-based anomaly detection systems including linear, fully connected, and convolutional autoencoders, as well as long short-term memory (LSTM) neural network for cybersecurity enhancement of transformer protection. The simulation results indicated that the LSTM model outperforms the other models for detecting cyberattacks targeting asymmetrical fault data. The linear autoencoder, fully connected autoencoder and 1D CNN further outperform the LSTM model for detecting cyberattacks targeting the symmetrical fault data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.