Data stream processing has been gaining attention in the past decade. Apache Flink is an open-source distributed stream processing engine that is able to process a large amount of data in real time with low latency. Computations are distributed among a cluster of nodes. Currently, provisioning the appropriate amount of cloud resources must be done manually ahead of time. A dynamically varying workload may exceed the capacity of the cluster, or leave resources underutilized. In our paper, we describe an architecture that enables the automatic scaling of Flink jobs on Kubernetes based on custom metrics, and describe a simple scaling policy. We also measure the e ects of state size and target parallelism on the duration of the scaling operation, which must be considered when designing an autoscaling policy, so that the Flink job respects a Service Level Agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.