Whenever a household faces lack of banking payment services and access to funding, it often constraints their everyday activities and the chance to avail the financial services again. Our study explores the possible explanations of why a household becomes financially excluded in an underdeveloped area of Northern Hungary. By using a questionnaire (n = 502) in the spring of 2019, we conducted a covariance-based SEM analysis for detecting the key reasons. We find that the low level of income, high ratio of financial problems and high intensity of short-term borrowings equally and directly contribute to the financial exclusion of the households. Furthermore, we could not confirm any direct effects of the banking service availability, although bank services significantly influence an intermediary factor, which is the increasing repayment problem in the social environment. Our results verify the responsibility of the regulation in lending and debt collection to achieve a better social policy.
A vállalkozási környezet és a vállalkozással kapcsolatos attitűdök megismerése az egész gazdaság és társadalom számára fontos téma, hiszen a vállalkozások olyan pénzügyi és nem pénzügyi értéket teremtenek, amire nemzetgazdaságunknak és közösségeinknek nagy szüksége van. A vállalkozások fejlődése, valamint innovációs potenciálja számos gazdasági, környezeti és társadalmi probléma megoldásához járulhat hozzá. A vállalkozók és a vállalkozási környezet aktuális állapotának mélyebb megismerése amellett, hogy hasznos látképet ad, forrásként szolgálhat a döntéshozók számára is. A Global Entrepreneurship Monitor (GEM), a világ legnagyobb vállalkozáskutatása 1999 óta biztosít megbízható adatokat a felmérésben részt vevő gazdaságokra jellemző vállalkozói aktivitásról, a vállalkozási ökoszisztéma helyzetéről. A globális felmérésben, amelyben világszerte neves egyetemek vesznek részt, 2020-tól a Budapesti Gazdasági Egyetem képviseli Magyarországot. A 2016 óta az első, hazai, már a BGE Budapest LAB Vállalkozásfejlesztési Iroda irányításával zajló adatgyűjtésre 2021-ben került sor. A kutatás során a felnőtt, 18-64 éves lakosság körében 2014 fő bevonásával zajlott reprezentatív kérdőíves felmérés, továbbá 36 kiválasztott szakértő megkérdezésére került sor. Jelen riport a kutatás magyar eredményeit foglalja össze, információt biztosítva a vállalkozói atmoszféra, aktivitás és ökoszisztéma hazai helyzetéről.
The study discusses the reasons why entrepreneurs in the semi-peripheral country of Hungary see a positive and new opportunity in COVID-19. The study is about the factors that determine entrepreneurs’ ideas about starting a new business as a result of a pandemic. In our study, the Partial Least Squares Structural Equation Modelling (PLS-SEM) method is applied to a nationally representative sample, the data of which were provided by the data of the Global Entrepreneurship Monitor (GEM) international survey on Hungary. Our results show that the willingness of small and medium-sized enterprises in Hungary to start a business was not significantly affected by the COVID-19 pandemic. This is because positive perception can be traced back to past influences, such as individual characteristics, positive perceptions of the majority society, and the respondents’ perception of the Hungarian government’s COVID-19 related measures.
In our study, we examined the characteristics of nascent entrepreneurs using the 2021 Global Entrepreneurship Monitor national representative data in Hungary. We examined our topic based on Arenius and Minitti’s four-category theory framework. In our research, we examined system-level feature sets with four machine learning modeling algorithms: multivariate adaptive regression spline (MARS), support vector machine (SVM), random forest (RF), and AdaBoost. Our results show that each machine algorithm can predict nascent entrepreneurs with over 90% adaptive cruise control (ACC) accuracy. Furthermore, the adaptation of the categories of variables based on the theory of Arenius and Minitti provides an appropriate framework for obtaining reliable predictions. Based on our results, it can be concluded that perceptual factors have different importance and weight along the optimal models, and if we include further reliability measures in the model validation, we cannot pinpoint only one algorithm that can adequately identify nascent entrepreneurs. Accurate forecasting requires a careful and predictor-level analysis of the algorithms’ models, which also includes the systemic relationship between the affecting factors. An important but unexpected result of our study is that we identified that Hungarian NEs have very specific previous entrepreneurial and business ownership experience; thus, they can be defined not as a beginner but as a novice enterprise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.