Context: A Multivocal Literature Review (MLR) is a form of a Systematic Literature Review (SLR) which includes the grey literature (e.g., blog posts, videos and white papers) in addition to the published (formal) literature (e.g., journal and conference papers). MLRs are useful for both researchers and practitioners since they provide summaries both the state-of-the art and -practice in a given area. MLRs are popular in other fields and have recently started to appear in software engineering (SE). As more MLR studies are conducted and reported, it is important to have a set of guidelines to ensure high quality of MLR processes and their results.Objective: There are several guidelines to conduct SLR studies in SE. However, several phases of MLRs differ from those of traditional SLRs, for instance with respect to the search process and source quality assessment. Therefore, SLR guidelines are only partially useful for conducting MLR studies. Our goal in this paper is to present guidelines on how to conduct MLR studies in SE.
Method:To develop the MLR guidelines, we benefit from several inputs: (1) existing SLR guidelines in SE, (2), a literature survey of MLR guidelines and experience papers in other fields, and (3) our own experiences in conducting several MLRs in SE. We took the popular SLR guidelines of Kitchenham and Charters as the baseline and extended/adopted them to conduct MLR studies in SE. All derived guidelines are discussed in the context of an already-published MLR in SE as the running example.
Results:The resulting guidelines cover all phases of conducting and reporting MLRs in SE from the planning phase, over conducting the review to the final reporting of the review. In particular, we believe that incorporating and adopting a vast set of experience-based recommendations from MLR guidelines and experience papers in other fields have enabled us to propose a set of guidelines with solid foundations.
Conclusion:Having been developed on the basis of several types of experience and evidence, the provided MLR guidelines will support researchers to effectively and efficiently conduct new MLRs in any area of SE. The authors recommend the researchers to utilize these guidelines in their MLR studies and then share their lessons learned and experiences.
Sentiment analysis is one of the fastest growing research areas in computer science, making it challenging to keep track of all the activities in the area. We present a computer-assisted literature review, where we utilize both text mining and qualitative coding, and analyze 6,996 papers from Scopus. We find that the roots of sentiment analysis are in the studies on public opinion analysis at the beginning of 20th century and in the text subjectivity analysis performed by the computational linguistics community in 1990's. However, the outbreak of computer-based sentiment analysis only occurred with the availability of subjective texts on the Web. Consequently, 99% of the papers have been published after 2004. Sentiment analysis papers are scattered to multiple publication venues, and the combined number of papers in the top-15 venues only represent ca. 30% of the papers in total. We present the top-20 cited papers from Google Scholar and Scopus and a taxonomy of research topics. In recent years, sentiment analysis has shifted from analyzing online product reviews to social media texts from Twitter and Facebook. Many topics beyond product reviews like stock markets, elections, disasters, medicine, software engineering and cyberbullying extend the utilization of sentiment analysis 1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.