Momentary lapses in attention frequently impair goal-directed behavior, sometimes with serious consequences. Nevertheless, we lack an integrated view of the brain mechanisms underlying such lapses. By investigating trial-by-trial relationships between brain activity and response time in humans, we determined that attentional lapses begin with reduced prestimulus activity in anterior cingulate and right prefrontal regions involved in controlling attention. Less efficient stimulus processing during attentional lapses was also characterized by less deactivation of a 'default-mode' network, reduced stimulus-evoked sensory activity, and increased activity in widespread regions of frontal and parietal cortex. Finally, consistent with a mechanism for recovering from attentional lapses, increased stimulus-evoked activity in the right inferior frontal gyrus and the right temporal-parietal junction predicted better performance on the next trial. Our findings provide a new, system-wide understanding of the patterns of brain activity that are associated with brief attentional lapses, which informs both theoretical and clinical models of goal-directed behavior.
Multisensory integration has often been characterized as an automatic process. Recent findings suggest that multisensory integration can occur across various stages of stimulus processing that are linked to, and can be modulated by, attention. Stimulus-driven, bottom-up mechanisms induced by cross-modal interactions can automatically capture attention towards multisensory events, particularly when competition to focus elsewhere is relatively low. Conversely, top-down attention can facilitate the integration of multisensory inputs and lead to a spread of attention across sensory modalities. These findings point to a more intimate and multifaceted interplay between attention and multisensory integration than was previously thought. We review developments in our understanding of the interactions between attention and multisensory processing, and propose a framework that unifies previous, apparently discordant findings.
Three experiments were conducted to determine whether attention-related changes in luminance detectability reflect a modulation of early sensory processing. Experiments 1 and 2 used peripheral cues to direct attention and found substantial effects of cue validity on target detectability; these effects were consistent with a sensory-level locus of selection but not with certain memory- or decision-level mechanisms. In Experiment 3, event-related brain potentials were recorded in a similar paradigm using central cues, and attention was found to produce changes in sensory-evoked brain activity beginning within the 1st 100 ms of stimulus processing. These changes included both an enhancement of sensory responses to attended stimuli and a suppression of sensory responses to unattended stimuli; the enhancement and suppression effects were isolated to different neural responses, indicating that they may arise from independent attentional mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.