The three-phase response of urinary serotonin and dopamine in subjects simultaneously taking amino acid precursors of serotonin and dopamine has been defined.1,2 No model exists regarding the renal etiology of the three-phase response. This writing outlines a model explaining the origin of the three-phase response of urinary serotonin and dopamine. A “dual-gate lumen transporter model” for the basolateral monoamine transporters of the kidneys is proposed as being the etiology of the three-phase urinary serotonin and dopamine responses.PurposeThe purpose of this writing is to document the internal renal function model that has evolved in research during large-scale assay with phase interpretation of urinary serotonin and dopamine.Patients and methodsIn excess of 75,000 urinary monoamine assays from more than 7,500 patients were analyzed. The serotonin and the dopamine phase were determined for specimens submitted in the competitive inhibition state. The phase determination findings were then correlated with peer-reviewed literature.ResultsThe correlation between the three-phase response of urinary serotonin and dopamine with internal renal processes of the bilateral monoamine transporter and the apical monoamine transporter of the proximal convoluted renal tubule cells is defined.ConclusionThe phase of urinary serotonin and dopamine is dependent on the status of the serotonin gate, dopamine gate, and lumen of the basolateral monoamine transporter while in the competitive inhibition state.
No abstract
PurposeA novel method for differentiating and treating bipolar disorder cycling on the depressive pole from patients who are suffering a major depressive episode is explored in this work. To confirm the diagnosis of type 1 or type 2 bipolar disorder, the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria require that at least one manic or hypomanic episode be identified. History of one or more manic or hypomanic episodes may be impossible to obtain, representing a potential blind spot in the DSM-IV diagnostic criteria. Many bipolar patients who cycle primarily on the depressive side for many years carry a misdiagnosis of recurrent major depression, leading to treatment with antidepressants that achieve little or no relief of symptoms. This article discusses a novel approach for diagnosing and treating patients with bipolar disorder cycling on the depressive pole versus patients with recurrent major depression.Patients and methodsPatients involved in this study were formally diagnosed with recurrent major depression under DSM-IV criteria and had no medical history of mania or hypomania to support the diagnosis of bipolar disorder. All patients had suffered multiple depression treatment failures in the past, when evaluated under DSM-IV guidelines, secondary to administration of antidepressant drugs and/or serotonin with dopamine amino acid precursors.ResultsThis study contained 1600 patients who were diagnosed with recurrent major depression under the DSM-IV criteria. All patients had no medical history of mania or hypomania. All patients experienced no relief of depression symptoms on level 3 amino acid dosing values of the amino acid precursor dosing protocol. Of 1600 patients studied, 117 (7.3%) nonresponder patients were identified who experienced no relief of depression symptoms when the serotonin and dopamine amino acid precursor dosing values were adjusted to establish urinary serotonin and urinary dopamine levels in the Phase III therapeutic ranges. All of the 117 nonresponders who achieved no relief of depression symptoms were continued on this amino acid dosing value, and a mood-stabilizing drug was started. At this point, complete relief of depression symptoms, under evaluation with DSM-IV criteria, was noted in 114 patients within 1–5 days. With further dose adjustment of the mood-stabilizing drug, the remaining three nonresponders achieved relief of depression symptoms.ConclusionResolution of depression symptoms with the addition of a mood-stabilizing drug in combination with proper levels of serotonin and dopamine amino acid precursors was the basis for a clinical diagnosis of bipolar disorder cycling on the depressive pole.
BackgroundTwo primary categories of nutritional deficiency exist. An absolute nutritional deficiency occurs when nutrient intake is not sufficient to meet the normal needs of the system, and a relative nutritional deficiency exists when nutrient intake and systemic levels of nutrients are normal, while a change occurs in the system that induces a nutrient intake requirement that cannot be supplied from diet alone. The purpose of this paper is to demonstrate that the primary component of chronic centrally acting monoamine (serotonin, dopamine, norepinephrine, and epinephrine) disease is a relative nutritional deficiency induced by postsynaptic neuron damage.Materials and methodsMonoamine transporter optimization results were investigated, reevaluated, and correlated with previous publications by the authors under the relative nutritional deficiency hypothesis. Most of those previous publications did not discuss the concept of a relative nutritional deficiency. It is the purpose of this paper to redefine the etiology expressed in these previous writings into the realm of relative nutritional deficiency, as demonstrated by monoamine transporter optimization. The novel and broad range of amino acid precursor dosing values required to address centrally acting monoamine relative nutritional deficiency properly is also discussed.ResultsFour primary etiologies are described for postsynaptic neuron damage leading to a centrally acting monoamine relative nutritional deficiency, all of which require monoamine transporter optimization to define the proper amino acid dosing values of serotonin and dopamine precursors.ConclusionHumans suffering from chronic centrally acting monoamine-related disease are not suffering from a drug deficiency; they are suffering from a relative nutritional deficiency involving serotonin and dopamine amino acid precursors. Whenever low or inadequate levels of monoamine neurotransmitters exist, a relative nutritional deficiency is present. These precursors must be administered simultaneously under the guidance of monoamine transporter optimization in order to achieve optimal relative nutritional deficiency management. Improper administration of these precursors can exacerbate and/or facilitate new onset of centrally acting monoamine-related relative nutritional deficiencies.
An extensive list of side effects and problems are associated with the administration of l-dopa (l-3, 4-dihydroxyphenylalanine) during treatment of Parkinson’s disease. These problems can preclude achieving an optimal response with l-dopa treatment.Purpose:To present a case study outlining a novel approach for the treatment of Parkinson’s disease that allows for management of problems associated with l-dopa administration and discusses the scientific basis for this treatment.Patients and methods:The case study was selected from a database containing 254 Parkinson’s patients treated in developing and refining this novel approach to its current state. The spectrum of patients comprising this database range from newly diagnosed, with no previous treatment, to those who were diagnosed more than 20 years before and had virtually exhausted all medical treatment options. Parkinson’s disease is associated with depletion of tyrosine hydroxylase, dopamine, serotonin, and norepinephrine. Exacerbating this is the fact that administration of l-dopa may deplete l-tyrosine, l-tryptophan, 5-hydroxytryptophan (5-HTP), serotonin, and sulfur amino acids. The properly balanced administration of l-dopa in conjunction with 5-HTP, l-tyrosine, l-cysteine, and cofactors under the guidance of organic cation transporter functional status determination (herein referred to as “OCT assay interpretation”) of urinary serotonin and dopamine, is at the heart of this novel treatment protocol.Results:When 5-HTP and l-dopa are administered in proper balance along with l-tyrosine, l-cysteine, and cofactors under the guidance of OCT assay interpretation, the long list of problems that can interfere with optimum administration of l-dopa becomes controllable and manageable or does not occur at all. Patient treatment then becomes more effective by allowing the implementation of the optimal dosing levels of l-dopa needed for the relief of symptoms without the dosing value barriers imposed by side effects and adverse reactions seen in the past.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.