The primary aim of this study was to evaluate the antitumor efficacy of the bromodomain inhibitor JQ1 in pancreatic ductal adenocarcinoma (PDAC) patient-derived xenograft (tumorgraft) models. A secondary aim of the study was to evaluate whether JQ1 decreases expression of the oncogene c-Myc in PDAC tumors, as has been reported for other tumor types. We used five PDAC tumorgraft models that retain specific characteristics of tumors of origin to evaluate the antitumor efficacy of JQ1. Tumor-bearing mice were treated with JQ1 (50 mg/kg daily for 21 or 28 days). Expression analyses were performed with tumors harvested from host mice after treatment with JQ1 or vehicle control. An nCounter PanCancer Pathways Panel (NanoString Technologies) of 230 cancer-related genes was used to identify gene products affected by JQ1. Quantitative RT-PCR, immunohistochemistry and immunoblots were carried out to confirm that changes in RNA expression reflected changes in protein expression. JQ1 inhibited the growth of all five tumorgraft models (P<0.05), each of which harbors a KRAS mutation; but induced no consistent change in expression of c-Myc protein. Expression profiling identified CDC25B, a regulator of cell cycle progression, as one of the three RNA species (TIMP3, LMO2 and CDC25B) downregulated by JQ1 (P<0.05). Inhibition of tumor progression was more closely related to decreased expression of nuclear CDC25B than to changes in c-Myc expression. JQ1 and other agents that inhibit the function of proteins with bromodomains merit further investigation for treating PDAC tumors. Work is ongoing in our laboratory to identify effective drug combinations that include JQ1.
Chemical genetics has arisen as a powerful approach for identifying novel anti-cancer agents. However, a major bottleneck of this approach is identifying the targets of lead compounds that arise from screens. Here, we coupled the synthesis and screening of fragment-based cysteine-reactive covalent ligands with activity-based protein profiling (ABPP) chemoproteomic approaches to identify compounds that impair colorectal cancer pathogenicity and map the druggable hotspots targeted by these hits. Through this coupled approach, we discovered a cysteine-reactive acrylamide DKM 3-30 that significantly impaired colorectal cancer cell pathogenicity through targeting C1101 on reticulon 4 (RTN4). While little is known about the role of RTN4 in colorectal cancer, this protein has been established as a critical mediator of endoplasmic reticulum tubular network formation. We show here that covalent modification of C1101 on RTN4 by DKM 3-30 or genetic knockdown of RTN4 impairs endoplasmic reticulum and nuclear envelope morphology as well as colorectal cancer pathogenicity. We thus put forth RTN4 as a potential novel colorectal cancer therapeutic target and reveal a unique druggable hotspot within RTN4 that can be targeted by covalent ligands to impair colorectal cancer pathogenicity. Our results underscore the utility of coupling the screening of fragment-based covalent ligands with isoTOP-ABPP platforms for mining the proteome for novel druggable nodes that can be targeted for cancer therapy.
Pancreatic cancer is the one of the deadliest of all malignancies. The five year survival rate for patients with this disease is 3-5%. Thus, there is a compelling need for novel therapeutic strategies to improve the clinical outcome for patients with pancreatic cancer. Several groups have demonstrated for other types of solid tumors that early passage human tumor xenograft models can be used to define some genetic and molecular characteristics of specific human tumors. Published studies also suggest that murine tumorgraft models (early passage xenografts derived from direct implantation of primary tumor specimens) may be useful in identifying compounds with efficacy against specific tumor types. Because pancreatic cancer is a fatal disease and few well-characterized model systems are available for translational research, we developed and characterized a panel of pancreatic tumorgraft models for biological evaluation and therapeutic drug testing. Of the 41 primary tumor specimens implanted subcutaneously into mice, 35 produced viable tumorgraft models. We document the fidelity of histological and morphological characteristics and of KRAS mutation status among primary (F0), F1, and F2 tumors for the twenty models that have progressed to the F3 generation. Importantly, our procedures produced a take rate of 85%, higher than any reported in the literature. Primary tumor specimens that failed to produce tumorgrafts were those that either contained <10% tumor cells or that were obtained from significantly smaller primary tumors. In view of the fidelity of characteristics of primary tumor specimens through at least the F2 generation in mice, we propose that these tumorgraft models represent a useful tool for identifying critical characteristics of pancreatic tumors and for evaluating potential therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.