For energy saving and CO2 emissions reduction, in addition to extending the range of suitable raw material sources for glass manufacture, compositional reformulation, and alternative raw materials have been studied in the context of industrial container and float‐type soda‐lime‐silica (SLS) glasses. Lithium, potassium, and boron were applied to modify benchmark glass compositions. Reformulation impacts on key glass properties including the viscosity‐temperature relationship, thermal expansion, liquidus temperature, forming behavior and color. Compared to the benchmark glass, representative of commercial SLS glasses, melting temperatures (taken as temperatures corresponding to log (viscosity/dPa·s) = 2) of reformulated glasses are reduced by 11°C‐55°C. Investigation of four industrial by‐products (seashell waste, eggshell waste, biomass ash, and rice husk ash), and their potential suitability as alternative glass batch raw materials, was also conducted. Seashell waste and biomass ash were successfully introduced into representative green glass formulations.
Eight novel silicate, phosphate and borate glass compositions (coded as NCLx, where x = 1 to 8), containing different oxides (i.e. MgO, MnO2, Al2O3, CaF2, Fe2O3, ZnO, CuO, Cr2O3) were designed and evaluated alongside apatite-wollastonite (used as comparison material), as potential biomaterials for bone tissue repair and regeneration. Glass frits of all the formulations were processed to have particle sizes under 53 μm, with their morphology and dimensions subsequently investigated by scanning electron microscopy (SEM). In order to establish the nature of the raw glass powders, X-ray diffraction (XRD) analysis was also performed. The sintering ability of the novel materials was determined by using hot stage microscopy (HSM). Ionic release potential was assessed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Finally, the cytotoxic effect of the novel glass powders was evaluated for different glass concentrations via a colorimetric assay, on which basis three formulations are considered promising biomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.