The macrozoobenthic diversity patterns along a brackish–freshwater salinity gradient have been identified, considering effects of differences in the level of hydrological connection of coastal lakes with the sea on the structure of benthic invertebrate communities. The study is based on samples from six coastal lakes located along the southern coast of the Baltic Sea in Poland. The analysis of environmental and biological data confirmed the existence of stable phases (brackish water vs. freshwater), but as a result of periodical intrusion of seawater, adaptation of animal communities takes place, which was reflected in low values of the predictors describing them (number of taxa, density and diversity). Redundancy analysis indicates that values of conductivity and salinity are the major factors that determine the abundance of dominant groups of benthic fauna. The gradient of hydrological connection of the lakes with the sea accounted for 50% of the variance in biological data, physico-chemical variables for 25%, trophic variables for 15%, and only 9% of the variance was unexplained. The major implication of our results is that coastal lakes that differ only slightly in salinity can have alternative, regional patterns of diversity of structure of benthic fauna. Periodical inflow of brackish waters initiates adaptive cycles of benthic fauna, and their frequency is strongly linked with the hydrological regime. The rhythm of the inflow of seawater is variable, so that management and protection of coastal lakes are extremely complicated.
Lake Łebsko is the largest and most productive coastal lake of the southern Baltic Sea to which it is permanently connected. The shoreline is well-developed, and the lake is divided into three parts: eastern, central, and western. Seawater intrusion affects most strongly the eastern part, where the Łeba River connects it with the sea. Samples of water and sediments were collected in 2014–2015. In the same places and time interval, bottom fauna was collected to determine the influence of environmental predictors on its qualitative-quantitative structure. Metals Cr (chromium), Pb (lead), Ni (nickel), Cu (copper), and Al (aluminium) in the samples were analyzed using inductively coupled plasma optical emission spectrometry. Most of the analyzed physicochemical variables of water were significantly higher in the eastern part: conductivity, salinity, sulfates (p < 0.0001) and chlorides (p = 0.01). Metal concentrations in water did not differ significantly between the lake parts, but in sediments they were generally higher in the western part. During the study, we detected significant changes in descriptors and abundance of the major groups of benthic fauna (Oligochaeta and Diptera), mostly between the eastern and western parts. BIO-ENV analysis showed that the benthic community of Lake Łebsko is shaped primarily by physicochemical variables of water (42% of the variance), linked with intrusion of seawater. Secondarily, the structure of the benthic community is affected by the amounts of heavy metals in sediments (31%) and water (12%). The findings can help us improve the principles of management of coastal lakes, including modification of hydrological conditions.
The present study aimed to identify potential macrozoobenthic habitat indicators of the ecological success of restoration projects. As a part of the complex restoration project in the Słupia River floodplain (N Poland), the connectivity between three oxbow lakes and the river channel was re-established to improve biodiversity of the floodplain area, including bottom fauna. Following restoration, changes in the dynamics of flowing water and water levels induced the transformation of oxbows from plesiopotamal (lentic) to eupotamal (lotic) and subsequently to parapotamal (semi-lotic) habitats. The restored sites underwent a rapid depletion of benthic coarse particulate organic matter, with direct changes in most of the investigated parameters of bottom sediments, including conductivity, total organic carbon, soluble reactive phosphorus and total nitrogen. Redundancy analysis revealed that the changes in benthic fauna structure resulted from the increased connectivity with the river (flow rate) and changes in the chemical properties of sediments. The restored oxbow lakes were colonized by six new macroinvertebrate species whose density increased substantially. The assessment of the overall river-floodplain system restoration project indicated positive implications for improving the qualitative and quantitative structure of benthic fauna. However, to confirm ecologically successful restoration, it is necessary to evaluate appropriate sets of indicators based on a complex food web structure and more efficient or enhanced ecosystem functions. This study contributes to the discussion of sustainable management of floodplains to provide benefits to macroinvertebrates as indicators of aquatic ecosystem health under different restoration activities.
River restoration projects rely on environmental engineering solutions to improve the health of riparian ecosystems and restore their natural characteristics. The Kwacza River, the left tributary of the Słupia River in northern Poland, and the recipient of nutrients from an agriculturally used catchment area, was restored in 2007. The ecological status of the river’s biotope was improved with the use of various hydraulic structures, including palisades, groynes and stone islands, by protecting the banks with trunks, exposing a fragment of the river channel, and building a by-pass near a defunct culvert. The effects of restoration treatments were evaluated by comparing the physicochemical parameters of river water along the 2.5 km restored section between the source and the mouth to the Słupia, before restoration and 6 years after hydrotechnical treatments. A total of 18 physicochemical parameters were analyzed at 10 cross-sections along the river. The greatest changes were observed in the concentrations of NO3−-N and NH4+-N, which decreased by 70% and 50%, respectively. Dissolved oxygen concentration increased by 65%. Chloride values increased by 44%, and chlorophyll-a concentration increased by 30% after the project. The cut-off channel (by-pass), semi-palisades, and single groynes were the treatments that contributed most to water quality improvement. The results of this study indicate that river restoration projects can substantially reduce nitrogen pollution, which is particularly important in agricultural areas. Such measures can effectively reinstate natural conditions in river ecosystems. Hydrochemical monitoring is required to control the parameters of restored rivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.