In recent years, pig producers have struggled with the problem of low intramuscular fat levels in pork, which impacts palatability and ultimately meat quality. Reduced levels of intramuscular fat are likely the result of breeding objectives aimed at increasing lean meat content. In this study, three mutations within candidate genes for fat content (SCD, ACACA, and FASN) were selected, based on RNA-seq results and the relationship between polymorphisms in genes related to lipid metabolism, fattening and slaughter characteristics, as well as pork quality, including IMF level, were evaluated to identify selection markers. Moreover, their impact on gene expression was also examined. The PCR–RFLP (polymerase cha- in reaction – restriction fragments length) method was used to establish genotypes and effect sizes of potential genetic markers were estimated using a GLM model. It was identified that a FASN missense variant was positively associated with the expression level of this gene, which suggested its linkage with a mutation having a regulatory function. The association study indicated that the FASN missense variant may play a role in the determination of feed conversion and meat colour. In turn, a mutation in the ACACA gene showed a relationship with IMF content in the Puławska breed where the differences reached as much as 20%. We suggest considering all three mutations in further studies based on different pig populations due to the crucial role of SCD, ACACA, and FASN genes in lipid metabolism.
This study examined the relationships among physicochemical properties and ultrasonographic image attributes of pectoralis major muscles in broiler chickens. Forty male Ross 308 chicks were randomly assigned to four equinumerous fat-supplementation groups (Group SO: soybean oil; Group FO: flax oil; Group SO + FO: soybean oil + flax oil; and Group BF: beef fat). Ultrasonograms of birds’ pectoral muscles were obtained just before slaughter at 6 weeks of age and were subjected to digital image analyses to determine the mean pixel intensity (MPI) and pixel heterogeneity values (standard deviation of numerical pixel values; MPH). A total of 2, 4, 2, and 6 significant correlations were recorded in Groups SO, FO, SO + FO, and BF, respectively; there were no correlations with the chemical composition of the muscles in Groups SO and SO + FO. The strongest correlations were found between muscle lightness (L*) and MPH in Group BF (physical characteristic; r = −0.82, p = 0.003), and between crude fat/protein content and MPI/MPH of pectoral the major muscles in Groups FO/BF (chemical characteristics; r = 0.72, p = 0.02). There exists a potential application of ultrasonographic imaging and computerized image analysis for predicting certain physicochemical properties of pectoralis major muscles in broiler chickens.
The aim of this study was to assess the usefulness of nanowater (NW; water declusterized using cold plasma treatment) as a diluent for a commercial boar semen extender during the 15-day storage (Days 1 to 15) at 16-18 °C. Ejaculates collected from 8 boars were subjected to the standard evaluation and then diluted in the extender prepared with deionized water (DW) or NW to a final concentration of 3×10 9 spermatozoa/ml. The proportion of defective spermatozoa increased (P<0.05) from Day 10 to Day 15 of storage (22.8±16.6% to 41.8±26.4% in DW group and 18.6±11.7% to 34.8±25.4% in NW group) and it was significantly greater in DW group compared with NW group on Days 5 and 10 due mainly to a greater (P<0.05) number of mid-piece defects in semen stored in the DW-containing extender. Sperm progressive motility decreased (P<0.05) in both groups between Days 2 and 6, Days 6 and 10, and Days 10 and 12, whereas the percentage of motile spermatozoa declined (P<0.05) to Day 14 only in NW group. Sperm motility was greater (P<0.05) in NW group compared with DW group from Day 5 to Day 13. A decline in sperm progressive motility below 40% in all semen samples occurred by Day 11 in DW group and by Day 12 in NW group. The mean survival time of sperm at 37 °C ex situ was greater in NW group than in DW group on Day 5 (314±87 min compared with 284±87 min) and Day 10 (223±34 min compared with 182±27 min; NW group compared with DW group, respectively). There were no differences (P>0.05) between the two groups in the concentrations of alkaline phosphatase and aspartate aminotransferase in semen extender. To summarize, the use of NW as an extender diluent exerts cytoprotective effects on boar spermatozoa and delays a decline in sperm progressive motility.
Thirty clinically healthy Holstein-Friesian cows underwent twice daily machine milking and ultrasonographic examinations of the udder just prior to and after milking. Digital ultrasonographic images of each udder quarter were subjected to computer-assisted echotextural analyses to obtain mean numerical pixel values (NPVs) and pixel heterogeneity (PSD) of the mammary gland parenchyma. The average milk yield and pH were higher (p < 0.05) in the morning, whereas crude fat, total solids, solids non-fat and citric acid content were higher (p < 0.05) during the evening milking period. Mean NPVs and PSDs of the mammary gland parenchyma were greater (p < 0.05) after than before milking. There were significant correlations among echotextural characteristics of the udder and protein percentage, lactose content and freezing point depression determined in the milk samples collected in the morning and crude protein, casein, lactose and solids non-fat in the evening. Our results can be interpreted to suggest that computerized analysis of the mammary gland ultrasonograms has the makings of a technique for estimating non-fat milk constituents in cows. However, future validating studies are necessary before this method can be employed in commercial settings and research. Moreover, significant inter-quarter differences in udder echogenicity may necessitate further echotextural studies of separate quarters.
Numerous studies have been conducted to explain the biological functions and mechanism of ghrelin (GHRL) action in animals. However, the exact role of ghrelin in the regulation of growth and development in pigs is still unclear. The ghrelin gene is considered to be a good candidate marker for the identification of economically important traits in pig production such as feed intake, growth or carcass quality. The objectives of the present study were to investigate the regulatory regions and coding sequence of the porcine GHRL gene and determine the effect of polymorphisms at the ghrelin gene locus on selected fattening traits. Data were obtained from 346 gilts (pure breeds: Landrace, 188; Duroc, 74; Pietrain, 84). The PCR-RFLP (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism) method was used to detect polymorphisms within GHRL. Three polymorphisms were found, one in the promoter region (c.-93A>G) and two in the 3’UTR sequence (g.4428T>C; g.4486C>T). A significant (p ≤ 0.01) additive effect on daily gain (negative) and age at slaughter (positive) was obtained at the locus c.-93A>G. However, the most promising mutation was at the locus g.4486C > T, which is associated with total feed intake. Overall, the described GHRL polymorphisms may be useful as molecular markers in pig selection but future studies are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.