Cardiovascular diseases (CVDs) in the course of atherosclerosis are one of the most critical public health problems in the world. Endothelial cells synthesize numerous biologically active substances involved in regulating the functions of the cardiovascular system. Endothelial dysfunction is an essential element in the pathogenesis of atherosclerosis. Thus, the assessment of endothelial function in people without overt CVD allows for a more accurate estimate of the risk of developing CVD and cardiovascular events. The assessment of endothelial function is primarily used in scientific research, and to a lesser extent in clinical practice. Among the tools for assessing endothelial function, we can distinguish biochemical and physical methods, while physical methods can be divided into invasive and non-invasive methods. Flow-mediated dilation (FMD) is based on the ultrasound assessment of changes in the diameter of the brachial artery as a result of increased blood flow. FMD is a non-invasive, safe, and repeatable test, but it must be performed by qualified and experienced medical staff. The purpose of this paper is to present the literature review results on the assessment of endothelial function using the FMD method, including its methodology, applications in clinical practice and research, limitations, and future perspectives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.