This work describes a method to vectorize and Machine-Learn, ML, non-covalent interactions responsible for scaffold-directed reactions important in synthetic chemistry. Models trained on this representation predict correct face of approach in ca. 90 % of Michael additions or Diels-Alder cycloadditions. These accuracies are significantly higher than those based on traditional ML descriptors, energetic calculations, or intuition of experienced synthetic chemists. Our results also emphasize the importance of ML models being provided with relevant mechanistic knowledge; without such knowledge, these models cannot easily "transfer-learn" and extrapolate to previously unseen reaction mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.