To satisfy the most stringent criteria in terms of new cardiovascular stents, pure Zn was alloyed with 1 wt pct of Mg and subsequently subjected to plastic deformation, using conventional hot extrusion followed by multi-pass hydrostatic extrusion. A detailed microstructural and textural characterization of the obtained materials was conducted, and mechanical properties were assessed at each pass of deformation process. In contrast to pure Zn, hydrostatically extruded low-alloyed Zn is characterized by a remarkable increase in strength and ductility (YS = 383 MPa, E = 23 pct), exceeding the values needed for stents. Such behavior is associated with a dual microstructure containing fine-grained Zn, alternatively arranged with bands of a fragmented eutectic. Extensive grain refinement was achieved due to the process of continuous dynamic recrystallization. Hydrostatic extrusion changes the initial $$ \langle 10\bar{1}0\rangle $$ ⟨ 10 1 ¯ 0 ⟩ fiber texture to a 〈0002〉 and $$ \langle 10\bar{1}1\rangle $$ ⟨ 10 1 ¯ 1 ⟩ double fiber texture in which the 〈0002〉 component decreases with each pass of hydrostatic extrusion. The gradual evolution of texture components was simulated using a visco-plastic self-consistent model, which confirmed that, during hydrostatic extrusion, secondary slip systems were activated involving mostly the pyramidal one.
The mechanical properties such as compressive strength and nanohardness were investigated for Pinctada margaritifera mollusk shells. The compressive strength was evaluated through a uniaxial static compression test performed along the load directions parallel and perpendicular to the shell axis, respectively, while the hardness and Young modulus were measured using nanoindentation. In order to observe the crack propagation, for the first time for such material, the in-situ X-ray microscopy (nano-XCT) imaging (together with 3D reconstruction based on the acquired images) during the indentation tests was performed. The results were compared with these obtained during the micro-indentation test done with the help of conventional Vickers indenter and subsequent scanning electron microscopy observations. The results revealed that the cracks formed during the indentation start to propagate in the calcite prism until they reach a ductile organic matrix where most of them are stopped. The obtained results confirm a strong anisotropy of both crack propagation and the mechanical strength caused by the formation of the prismatic structure in the outer layer of P. margaritifera shell.
Controlled growth of hydroxyapatite (HAp) coatings on titanium substrate plays an important role in the fabrication of the composites for bone tissue engineering. We describe the synthesis of the crystalline hydroxyapatite coatings on the Ti/TiO2 substrate through a hydrothermal method by using ethylenediamine tetraacetic acid disodium salt (Na2EDTA) and varying concentrations of ammonium hydroxide (NH4OH) in calcium-phosphate precursor solution. Na2EDTA serves as a chelating agent, while NH4OH is used as an alkaline source and crystal growth modifier. We characterized the HAp coatings using x-ray diffraction, scanning electron microscopy, and Raman spectroscopy. We also performed the elemental chemical analysis by means of a particle induced x–ray emission method. Our results show that there is a pH limit for which the hydrothermal deposition of HAp on titanium occurs. Moreover, we observed that NH4OH had a measurable influence on the coating thickness as well as on the size and shape of the HAp crystals. We found that with the increase of NH4OH concentration, the thickness of the Hap layer increases and its morphology changes from irregular flakes to well-defined hexagonal rods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.