: We present an algorithm to solve the graph isomorphism problem for the purpose of object recognition. Objects, such as those which exist in a robot workspace, may be represented by labelled graphs (graphs with attributes on their nodes and/or edges). Thereafter, object recognition is achieved by matching pairs of these graphs. Assuming that all objects are sufficiently different so that their corresponding representative graphs are distinct, then given a new graph, the algorithm efficiently finds the isomorphic stored graph (if it exists). The algorithm consists of three phases: preprocessing, link construction, and ambiguity resolution. Results from experiments on a wide variety and sizes of graphs are reported. Results are also reported for experiments on recognising graphs that represent protein molecules. The algorithm works for all types of graphs except for a class of highly ambiguous graphs which includes strongly regular graphs. However, members of this class are detected in polynomial time, which leaves the option of switching to a higher complexity algorithm if desired.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.