The popularity of smokeless tobacco (ST), or noncombusted tobacco, usually placed within the mouth to be chewed, sucked, or swallowed, is growing rapidly and its prevalence of use is rising globally, due (in part) to greater convenience, as allowable cigarette smoking areas are rapidly decreasing, and increased social acceptability. Though data are limited, ST usage has been directly linked to a number of adverse health outcomes. The potential role that immune dysfunction, including dysregulation of immune cells and their components, may play in the progression of these adverse health outcomes is only just beginning to emerge. Evidence suggesting reproductive outcomes, such as perinatal mortality, preterm birth, and reduced sperm viability, also exists in conjunction with ST use. Cardiovascular health may also be impacted by ST use, resulting in increased blood pressure and endothelial dysfunction, both of which may potentially lead to cardiovascular diseases. This review describes the toxicological implications associated with ST use, with emphasis on immune, reproductive, and cardiovascular outcomes. Epidemiological studies are discussed with respect to experimental studies to help develop the relationship between ST and disease pathology. This review also summarizes the gaps in ST knowledge and potential future directions that are needed to more fully delineate the complex systems driving the adverse health outcomes associated with its use.
The popularity of smokeless tobacco (ST) is growing rapidly and its prevalence of use is rising globally. Consumption of Gutkha, an addictive form of ST, is particularly common amongst South Asian communities throughout the World. This includes within the US, following large-scale immigration into the country. However, there exists a lack of knowledge concerning these alternative tobacco products. To this end, a study was carried out to determine the toxicity of gutkha, and what role, if any, nicotine contributes to the effects. Adult male mice were treated daily for 3-week (5 day/week, once/day), via the oral mucosa, with equal volumes (50 μL) of either sterile water (control), a solution of nicotine dissolved in water (0.24 mg of nicotine), or a solution of lyophilized guthka dissolved in water (21 mg lyophilized gutkha). Serum cotinine, measured weekly, was 36 and 48 ng/mL in gutkha- and nicotine-treated mice, respectively. Results demonstrated that exposure to nicotine and gutkha reduced heart weight, while exposure to gutkha, but not nicotine, decreased liver weight, body weight, and serum testosterone levels (compared to controls). These findings suggest that short-term guhtka use adversely impacts growth and circulating testosterone levels, and that gutkha toxicity may be driven by components other than nicotine. As use of guthka increases worldwide, future studies are needed to further delineate toxicological implications such that appropriate policy decisions can be made.
Background: Over 20 genetic risk factors have been confirmed to associate with elevated risk for Alzheimer’s disease (AD), but the identification of environmental and/or acquired risk factors has been more elusive. At present, recognized acquired risks for AD include traumatic brain injury, hypercholesterolemia, obesity, hypertension, and type 2 diabetes. Methods: Based on reports associating various inhalants with AD pathology, we investigated the possibility that air pollution might contribute to AD risk by exposing wild-type mice to a standard air pollution modeling system employing nickel nanoparticle-enriched atmosphere for 3 hr. Results: Mice exposed to air pollution showed 72-129% increases in brain levels of both amyloid-β peptides Aβ40 and Aβ42, as well as Aβ42/40 (p <0.01). Conclusions: These effects on elevation of brain Aβ exceed those associated with trisomy 21, a known risk for early onset AD pathology, raising the possibility that clinical importance might be attached. Further work is required to establish the molecular and physiological basis for these phenomena. The rapid, dramatic effect, if verified, would suggest that inhalant exposures should be evaluated for their possible roles in contributing to the environmental risk for common forms of AD.
Over 20 genetic risk factors have been confirmed to Background: associate with elevated risk for Alzheimer's disease (AD), but the identification of environmental and/or acquired risk factors has been more elusive. At present, recognized acquired risks for AD include traumatic brain injury, hypercholesterolemia, obesity, hypertension, and type 2 diabetes. Based on reports associating various inhalants with AD Methods: pathology, we investigated the possibility that air pollution might contribute to AD risk by exposing wild-type mice to a standard air pollution modeling system employing nickel nanoparticle-enriched atmosphere for 3 hr. Mice exposed to air pollution showed 72-129% increases in brain Results: levels of both amyloid-β peptides Aβ40 and Aβ42, as well as Aβ42/40 (p <0.01). These effects on elevation of brain Aβ exceed those Conclusions: associated with trisomy 21, a known risk for early onset AD pathology, raising the possibility that clinical importance might be attached. Further work is required to establish the molecular and physiological basis for these phenomena. The rapid, dramatic effect, if verified, would suggest that inhalant exposures should be evaluated for their possible roles in contributing to the environmental risk for common forms of AD.
The response to the 2010 Macondo oil well blow-out in the Gulf of Mexico used significant quantities of dispersants. The materials that comprise the oil dispersant, COREXIT 9500® present minimal toxicities. Risk to spill responders would be reduced through the use of personal protective equipment. At the time, oil spill dispersants were not well understood outside of the oil spill response industry. The apparent data gap resulted in a rush to generate data on these materials without consideration of the existing toxicity data used by the consumer product industry. A review of new in vitro and in vivo toxicology studies indicated numerous examples where the study design was not clearly defined, leading to difficulties in the evaluation of study quality and uncertain relevance of the studies to human health risk assessment. The lack of transparent communication of the results to the scientific investigators and the public has led to a mistrust of oil dispersants, due to a misunderstanding of their potential hazards and risks to human health. This paper will examine the hazardous properties of individual dispersant constituents and technological considerations of published toxicology studies of oil spill dispersants. This summary will objectively evaluate oil dispersant ingredients for human health risk assessments and provide guidance to future scientific investigators on high quality study designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.