Pd-doped chabazite (Pd/CHA) offers unique opportunities to adsorb and desorb NO x in the target temperature range for application as a passive NO x adsorber (PNA). The ability of Pd/CHA to trap NO x emissions at low temperatures (<200 °C) is facilitated by the binding of NO x species at various Pd sites available in the CHA framework. Density functional theory (DFT) simulations are performed to understand Pd speciation in CHA and the interaction of NO with Pd/CHA to explain the mechanisms of NO adsorption, oxidation, and desorption processes. The calculations are used to elucidate the important role of Pd1+ cationic species, anchored at 6MR-3NN, in providing a strong (E b = −272 kJ/mol) NO adsorption site in Pd/CHA. For NO release, the redox transformation of Pd species comes into play and Pd1+ species are suggested to transform into cationic Pd2+, [PdOH]+, or [Pd–O–Pd]2+ species, all of which show significantly reduced NO binding (−116, −153, and −117 kJ/mol, respectively) as compared to Pd1+. This enables NO desorption at the operating temperature of a downstream catalyst for subsequent catalytic reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.