The microalga Chlamydomonas Reinhardtii (CR) is used here as a model system to study the effect of complex environments on the swimming of micro-organisms. Its motion can be modelled by a run and tumble mechanism so that it describes a persistent random walk from which we can extract an effective diffusion coefficient for the large-time dynamics. In our experiments, the complex medium consists in a series of pillars that are designed in a regular lattice using soft lithography microfabrication. The cells are then introduced in the lattice, and their trajectories within the pillars are tracked and analyzed. The effect of the complex medium on the swimming behaviour of microswimmers is analyzed through the measure of relevant statistical observables. In particular, the mean correlation time of direction and the effective diffusion coefficient are shown to decrease when increasing the density of pillars. This provides some bases of understanding for active matter in complex environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.