Coisotropic algebras consist of triples of algebras for which a reduction can be defined and unify in a very algebraic fashion coisotropic reduction in several settings. In this paper we study the theory of (formal) deformation of coisotropic algebras showing that deformations are governed by suitable DGLAs. We define a deformation functor and prove that it commutes with reduction. Finally, we study the obstructions to existence and uniqueness of coisotropic algebras and present some geometric examples.
Coisotropic reduction from Poisson geometry and deformation quantization is cast into a general and unifying algebraic framework: we introduce the notion of coisotropic triples of algebras for which a reduction can be defined. This allows to construct also a notion of bimodules for such triples leading to bicategories of bimodules for which we have a reduction functor as well. Morita equivalence of coisotropic triples of algebras is defined as isomorphism in the ambient bicategory and characterized explicitly. Finally, we investigate the classical limit of coisotropic triples of algebras and their bimodules and show that classical limit commutes with reduction in the bicategory sense.
Coisotropic algebras consist of triples of algebras for which a reduction can be defined and unify in a very algebraic fashion coisotropic reduction in several settings. In this paper, we study the theory of (formal) deformation of coisotropic algebras showing that deformations are governed by suitable coisotropic DGLAs. We define a deformation functor and prove that it commutes with reduction. Finally, we study the obstructions to existence and uniqueness of coisotropic algebras and present some geometric examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.